Chapter 5
Regular Expressions

Plan

1. Definitions

2. Kleene's Theorem
* Compute the regular expression associated with an automaton
e From the reqular expression to the automaton

3. Star Lemma

Regular languages

A language is said to be regular (rational) if there exists a reqular grammar that

generates it.
Let the grammar G = (Vp, Vy, S, R),

Definition of a regular grammar:
(7 is said to be reqular if and only if all its production rules have one of the following

forms:

A-—+raBorA —>awthA, B¢ Vyanda € Vy.

Regular languages

Definition: A language is regular if and only if there exists a regular grammar that

generates it.

Definition: A language is regular if and only if there exists a finite state automaton

that recognizes it.

Closure properties of the class of regular

languages

® In addition to the regular operations (., *, union, and
mirror), the class of regular languages is closed under

complement and intersection. .

Rational Languages

Definition:
A language is called a rational language If it can be expressed using a finite number of

operations (Regular Expressions).

Definition:
Let X be an alphabet. The regular expressions defined over X and the sets they

denote are recursively defined as follows:
1. 0 is a regular expression (empty set).
2. ais a regular expression representing the set {a}.
3. Ifw; € X, then wj is a regular expression representing the set {w; }.

4. If By and E9 are two regular expressions, then Ey.Fs, By |J Ey, and ET are

also regular expressions.

-

e

Example

L = {w € {0,1}* such that w = 0 mod 2}
e E;=(0U1)*.0 = X™.0 (insignificant zeros).
e FE;=1.(0U1)*.0U 0 (no insignificant zero).

Operator precedence:
Kleene star and plus in the exponent take precedence over concatenation, which in

turn takes precedence over plus on the line.

* (Itération)
. (Concaténation)
W (union)

Example:

E =0.1* U0 = ((0.(1)*) U 0)

Definition:
Two regular expressions £/ and E5 are equivalent if and only if they define the same

language, i.e., L(E1) = L(E»).

¢ Kleene's Theorem: The class of rational languages is exactly equal to the class of

regular languages.

Conversion

From FSA<> RE

From FSA < RE

* Proposition: For every regular expression E, there exists a

finite state automaton (FSA) that recognizes the language

denoted by E.

* Proposition: For every finite state automaton A, there
exists a regular expression E that denotes the language

recognized by A.

From the regular expression to the
automaton

RE—> FSA

(a+ b)*ab(bb + a)* —> o

e

|. Associate an automaton with a regular
expression

® It is possible to mechanically (and recursively) associate

an E-transition with a regular expression. For this, we will

use three basic automata and three generic automata

Basic Automata

® The first automaton recognizes the language associated with
the regular expression E.

LO——0

® The second automaton recognizes the language associated

with .
‘x 'F-F"_“‘-.,
O O

® The third automaton recognizes the language associated with

the regular expression a.

rexe)

Regular expressions (RE) are generated through union,
concatenation, and closure operations. This results in the following
three cases:

The expression R + S: {\/&O " ¢
| @)
% : E

O~ OO O

The expression RS:

The expression R*:

{H@j%

Note: For the expression (R), it is sufficient to use the automaton
associated with R.

™~

Example

Construct the automaton associated with the regular expression

(0+1)*1(0+1)

Solution

Step 1: (0+1)

<
Lo P oo
00

Step 2: (0+1)*

Solution

Step 3: (O+1)*1(0+1)

Y s 3

L]

lI. The Nerode derivatives

Derivatives

Definition:
Let L be a language over an alphabet X and w € X*. The derivative of L with

respect to w, denoted L || w, is defined as:
L|lw={z€ X" |w.z€ L}

Examples:

Let the languages be:
L, = {¢,a,ab,aa,ba} and Ly = {a" | n > 0}.

e L ||a={eb,a}
e L, || aa={€}

. Lg EIZLQ

Derivatives

Nerode's Theorem:

A language L is regular over X * if and only if the number of derivatives of L is finite

Example:

L= {aibi |i,j>0)

e Ll||la={a'¥|i,7>0}=1L
e« Llb={b]j>0}=L

Properties of derivatives

€ If a; = a,
® ” (lj =] :
%) Otherwise

o (LiUL2) |la= Ly | aUL;y | a

(Ll ” (1).L2 |f E ¢ Ll

@ (Lle) “ a—
(L1]| a).LaULy ||a Otherwise

o L*||la= (L] a).L*;

Properties of derivatives
o L|lwiwe= (L[w) | ws;
e L||w=9 ifnowordin L starts with w
¢ clla=g;

e wl|w=L.

Examplel

L = { a'bi such thati,j = 0}
L//e=1L
L//a={absuchthati,j>0}=1L
L//b={bsuchthat)j>0}=L,
Li//a=b//ali=0 L =0 =L;
Ly /b =L,

L.//fa=L//b=L

Exemplel

L = {a'bi such thati,j =0}

L//e=1L

L//a={absuchthati,j>0}=1L

L//b={bsuchthatj>0} =L,

L1f’f3:bf/’3|_1:@|_1:®:|_g

|-1/fh:|-1

L-//a=L//b =L

Example 2

L = {a'bi such thati,j> 0}
L//a={absuchthati>0,j>0}=L,
L/b=0 =L,

Li//a=L
Li//b={bsuchthat)j>0} = L;
L.//a=L//b=L

Ls//a=0 =1L,

Lsffb:Ls

Example 3

Let the language L = (a + b)*ab(bb + a)*.
Compute L || a.

L =(atb) ab(bb+a)]

L1 L2

e
Example 3

L|a=(a+b)*| a.ab(bb+ a)* + ab(bb+ a)* || a

(LI || H',).Lz

(L] ” (I.).Lg U Lg ” (e

e

Example 3

Ll|a=(a+0b)*| a.ab(bb+ a)*+ ab(bb+ a)* || a

=(a+0b) || a.(a + b)*ab(bb + a)* + b(bb + a)*

o wlL|w=L

e

Example 3

Ll a=(a+b)*| a.abbb+ a)*+ ab(bb+ a)* || a

=(a+b) || a.(a + b)*ab(bb + a)* + b(bb + a)*

=(a||a+0b| a).a.(a+ b)*ab(bb+ a)* + b(bb + a)*

o ([hULy |a=Li|[aUL,]|a

e

Example 3

Ll a=(a+b)*| a.abbb+ a)*+ ab(bb+ a)* || a

=(a+b) || a.(a + b)*ab(bb + a)* + b(bb + a)*

e

Example 3

Ll a=(a+b)*| a.ab(bb+ a)*+ ab(bb+ a)* || a

:(a

b) || a.(a

b)*ab(bb

a)*

b(bb -

- a)’

=(a||a+0b| a).a.(a+ b)*ab(bb + a)* + b(bb + a)*

=(a + b)*ab(bb + a)* + b(bb + a)*.

:Ll

We stop here because there are no more derivatives to

compute, so the result is a new language: L , .

Calculate the regular expression
associated with an automaton

From FSA— RE

0‘® —> (a+ b)*ab(bb+ a)*
b

Automaton reduction

Automaton reduction

The process to construct a regular expression from an

automaton is as follows:

® For each accepting state q, eliminate all intermediate states

between e(the initial state) and q;

* If g# ¢, , we obtain an automaton with two states. The regular

expression associated with the language is then:
R U

(R+SU*T)*SU* () s ()

® If e;is an accepting state, then we obtain an automaton with a
single state. The regular expression associated with the

. .
language is then : R .

e The regular expression representing the automaton is then
the union of all the expressions calculated from the reduced
automata by applying rules 2) and 3) for each of the

accepting states of the initial automaton.

Example

¢ Find the regular expression of the following non-

deterministic finite automaton

Solution

0

RGRRORNGERG

0+1

)
Step 1 .
. 1 . 0+1 ‘ 0+1 .

0+1

—

Step 2

Solution

Step 3

The regular expression associated:

0+1

@ 1(0+1)(0+1)

(0+1)*1(0+1)(0+1)‘

Solution
0.1
()
\<)

Step 4: Eleminate the state D

0+1

B g

The regular expression associated 1s: (0+1)*1(0+1)

The ER is (0+1)*1(0+1) + (0+1)*1(0+1)(0+1)
o

I

Arden's equation

From finite state automata to Arden's
equations

Consider the automaton
a.b

Let Lq be the language recognized by state q of the automaton.
The automaton can then be described as a system of

equations on languages .

(a +b).L1 + a.Ls
(a + b).La

= ¢

et e,
B~ = b
Al It i

|l

The language recognized by the automaton is the language of its

initial state

From Arden's equations to regular
expressions

¢ To obtain the regular expression corresponding to each
. . '
language Lq, we solve the system of equations using Arden's
lemma
Arden's Lemma:

Let R and S be reqular expressions over the alphabet X, and suppose that X is a regular language that

satisfies the equation:
X=R-X+S5

where:
» X is the unknown language we want to find,

e R and S are known regular expressions.

Arden's Lemma states that the solution to this equation is:

X=R"-8

Arden’s Lemma

X=aXWb — X=2a"b

Application

° By applying Arden's lemma to the previous system of

equations, we obtain

X=aXUb — X=a'b

(L, = (a+b).Li+al;,=(a+by.a.L,=(a+b)*a.(la+b)

A B A g
(a+b).Ly=(a+ble=(a+ b

f.

=~
|]
I

I
1

lteration Lemma (Star Lemma)

For any regular Language L, it exist an integer N € N such that
Yw E_L,_|(U| 2 n ' We can decompose itto Uvy, u, y € X and v e X*

such that UViV el (UV’J/' el 12> 0)
Example Demonstrate th L:{:—jil:)i , 120} isnot regular Language

Proof by contradiction

* We suppose that L is regular :
e Vw € [We have

w=uvy,u, y € Xet ve X* suchThat uv'yelL
* We put . (U:anbn

Exemple

l)vea*= |v| =k, k>0.

= o= ab™ = alnkigkpn

—>alk(ak)bne L,i>0

If i=0Then a™kb" e L contradiction for k>O.
2)vebt*= |v| =k, k>0.

= n= abh™ =a"bkb"k

—=a"(bX)b"ke L,i>0

If i=0 Then a"b"* € L contradiction for k>O0.

-

Example

3) v € atb* = v =aklbk?, k1, k2 > 0.
— o = ah™ = gn-kigklpk2pn-k2
jan-kl(aklka)ibn-kz c L) | >0

f i=2 Then a"*laklpk2aklpkzpn-ke e |
contradiction.

So L is not a regular language (L& Reg(X")).

Methods to show that a language is
regular

We can show the regularity of a language L using one of the following methods:

« All finite languages are regular;

- If we find a DFA that recognizes a language L, then L is regular;

« If we find a regular grammar generating L, then the language is reqular;
» We can use Nerode's theorem to show that a language is regular;

» We can exploit closure properties to show that a language is regular.

™~

Methods to show that a language Is
NOT regular

To show the irregularity of a language L, it is not enough to be
unable to find a DFA recognizing it; we can use the following
two methods to do so:

* Proof by contradiction for the star theorem;

* Exploiting the closure properties of non-regular languages:
regular languages are closed under certain operations (such as
union, intersection, complementation, concatenation, and
Kleene star) and non-regular languages may fail to maintain

these properties under some operations.

