Chapter 6

Algebraic Grammar (Context-Free)

e

.)
Reminder on grammars and algebraic

languages

Definition of a Type 2 Grammar:

A grammar G = (Vp, Vv, S, R) is called a context-free grammar (Algebraic or Type 2)

if and only if all of its production rules are in the form:

A — Bwhere Ac Vyand B € (VpUVy)*

Definition of Type 2 Languages (Context-Free or Algebraic):
These are the languages that can be defined by Type 2 grammars.

Note: The set of regular languages is included in the set of algebraic languages.

The syntax tree

Given the use of a single non-terminal symbol on the left-hand side of production

grammars, rules in context-free it is always possible to construct a derivation tree

for a generated word.

Definition
Let the grammar G = (Vp, Vi, S, R) and let w € L(G). A syntax tree associated

with w is constructed such that:
e The root of the tree is labeled with the axiom;
e The intermediate nodes contain non-terminals;

e The leaves are terminals. The left-to-right reading of the leaves of the tree

reconstructs the word to which the tree is associated.

Left derivation (right derivation)

Let G = (Vp, Vi, S, R) be an algebraic grammar. A word w is said to be obtained

by left derivation (resp. right derivation) if it is derived from the axiom by always

replacing the leftmost non-terminal (resp. the rightmost non-terminal) during the derivations.

Example:
S > aAS |a
A — ba

Let w = abaaabaa

Left Derivation:

S = aAS = abalS = abaa AS = abaaabS = abaaabaa

Right Derivation:

S = aAS = aldaAS = aAaAa = aAabaa = abaaabaa

Notion of ambiguity

¢ Definition of an ambiguous word:
A word W is said to be ambiguous if and only if there exist

two different derivation trees associated with it.

¢ Definition of an ambiguous grammar:
A grammar G is said to be ambiguous if and only if there

exists at least one ambiguous word belonging to L(G).

ambiguity

Definition:
Let G=(X,V,P,S) be an algebraic grammar. A word w is said to
be ambiguous it and only if there exist more than one left
derivation (resp. more than one right derivation) for this word.
Example:
E +E{E|E E|ExE|E:E|(E)|ID
ID x|y

Apply to the word W=XxXx+Y¥

Example 1

® [Let G be the grammar that has the following production rules:

S—SAS|SVS|S=-S|S<-S|-S [q|p

* Question: Show that G is ambiguous.

Answer:
The word p A\ g << p is ambiguous because there are two different

derivations that allow us to reach it. If we number the rules from 1to 7,

we will have:

SFA)S<SF()SASEF(TMpASE(6B)pAgesp
SEF(W)SASFApASEOB)prges SE(T)phgep

Therefore, the grammar (G is ambiguous.

Example 2

w=2x5+4

E — E+E |E-E |ExE |E<E | (E) | ID

ID—>1|2].. |9

/\\
/l\

E E
|L E/4l-\E
‘2 ID ID
5 4

2x9=18

Definitions

Productive and Non-Productive Non-Terminals

e A non-terminal A is said to be productive if and only if

Jw € V7 suchthat A =% w.

e A non-terminal A is said to be non-productive if and only if

Yw € V7, there is no indirect derivation such that A =" w.

Accessible and Inaccessible Non-Terminals

* A non-terminal A is said to be accessible if and only if
da € (Vr U VN)* suchthat S =* aand A appears in a.

e A non-terminal A is said to be inaccessible if and only if

Va € (Vr UVN)*, S =" @, then A does not appear in a.

a -

Definition

¢ Reduced Grammar
A grammar is said to be reduced if and only if all the non-
terminals in its production rules are reachable (accessible)

and productive.

* Note
Production rules that contain non-terminals that are non-
productive or inaccessible are useless and can be removed
without any influence on the language generated by the

rammar.
&

All symbols are accessible and produce something

mmmm) All symbols are useful

Suppression des symboles inutiles

* Remove symbols that produce nothing and the
rules where they appear.

* Remove from G the inaccessible symbols and
the productions where they appear.

Unit production

e Unit Production

A production A — B is called a unit production if and only if A and B

are non-terminal symbols.

* Note:
To remove the unit production A —» B, it is enough to add to the production

rules of A all the productions of B.

This removal may lead to the appearance of other unit productions, which is why a

recursive algorithm must be applied.

Definition
* Proper Grammar
A grammar is said to be proper if and only if:
e |tisreduced:

e |t does not contain unit productions;

e The axiom that can generate € exists, with the condition that it does

not appear in any right-hand member of the rules.

* To eliminate £-productions, first determine the set of non-terminals that are

derivable to £ (directly or indirectly); then, modify the productions containing

these non-terminals to replace in all the left-hand parts of productions the nullable

symbols with the empty word, in all possible ways.

e

Examples

Example 1

1) S—>aSb|ab 2) S—>aAble; A —>aAb|ab

Example 2

S—>aSb|¢e

Make G is €-free

Example 3

S — AbB
A —>aAb e
B—->Ba ¢

G is €-free

G is not €-free

S'>S ¢
S — aSb | ab

S—b/ bB|Ab|AbB
=> A — aAb | ab
B—-Bala

Example

® [et G be the grammar defined by the following production

rules:
S—AB|EaE ED
A—AalaB D—dD|e
B—bBlaA

C—AB|aS
I. Find the language generated by G.
2. Transform G into a reduced grammar.
3. Transform G into a proper grammar.

4. Verify the language found in question 1.

e
Example (solution)

« L(G) = {d'ad / i,j 2 0}.
* The non-terminal C is unreachable (non-accessible), A and B are non-

productive, so we remove the rules containing A, B, or C and the
resulting grammar is:

S— EaEE - DD —dD | €

 The grammar has a unit production E — D. We remove it and replace all
occurrences of E with D, resulting in the following grammar:

S— DaDD —dD | €

* The grammar is still not clean due to the rule D — €, so we eliminate it.
For each occurrence of D on the right-hand side of a rule, we create
another rule. We get the clean grammar:

S—DaD | aD | Da | aDb —dD | d

* The language found is correct, but it is easier to find with the clean
grammar.

-

Chomsky Normal Form

*A grammar G=(V, Vy S,R) is said to be in Chomsky Normal Form
(CNF) it and only if all its production rules are of the form:

A — BCorA — awithA,B,CEV andaEV..

Proposition:

* For any algebraic grammar, there exists an equivalent grammar in
Chomsky Normal Form.

* The practical advantage of Chomsky Normal Form (CNF) is that
the derivation trees are binary trees, which makes it easier to apply

tree exploration algorithms.

Chomsky Normal Form"

To obtain a Chomsky Normal Form grammar equivalent to an algebraic grammar G,
the following steps are required:

. Transform the grammar into a proper grammar.
. For each terminal @, introduce the non-terminal C,,, then add the rule C, — a.
. For each rule A — a, with |a:| > 2, replace each terminal by the associated non-terminal.

. Foreachrule A —» B3, with |8| > 3, (8 = 8185 ... 3,), create the non-terminals D;, then replace the

rule with the following rules:
A = BiDy,
D, — ﬁng, D, >, — B, 1B, where D; = Bi—l—l BH—? ... DB, with7 varying from1ton — 2.

Example

S — BA, | AB;
S —Ba|Ab = A —>SA||AAB, | A,
A —Sa AAb|a B - SB; | BBA, | B,
B Sb|BBa|b i
B;—b
S —> BA; | AB;
—1 A 5A1| AX,|la
B - SB; |[BXy | b
X1—=AB,
X,—BA,
Aj—sa

Bi—b

Greibach Normal Form

* An algebraic grammar is in Greibach Normal Form (GNF) if and only

if all its production rules are of the form:

A~ xaorS — g wherex € Vp, a € Vi, and S is the axiom.

Proposition:

For any algebraic grammar (71, there exists a grammar (G5 in Greibach

Normal Form such that L(G3) = L(G1).

Practical Interest of GNF:

The practical advantage of GNF is that with each derivation, we determine an
Increasingly longer prefix formed solely by terminal symbols.
This allows the construction of pushdown automata from grammars

more easily, and consequently, syntax analyzers that are easily implementable.

Construction of the GNF of a grammar

e Input: G reduced and proper

e Output: G' in GNF

Let (& be an algebraic grammar, reduced and proper.
Definitions:

e A non-terminal symbol A is said to be left-recursive if there exists at least one

production rule in P such that:

A Aa(A c Vy, ac (VyUVp)H.

* A grammar is said to be left-recursive if there exists at least one left-recursive

non-terminal.

Algorithm for eliminating left recursion

® Apply the following transformation to all production rules

until all direct and hidden left recursions are eliminated.

If (A > Aﬂii/,ﬁi) € P with aia.ﬁh g € (VN L VT)* and ,3.5' # A
Then (A > ﬁt/ﬁﬂﬂf) and A" — D‘.‘f/ﬂii‘:‘il'r.

Example: Simple Left Recursion

Therule A — AAS /aS /bis transformed into:

A - aS/b/aSA"/bA’
A" AS/ASA

Example: Hidden Left Recursion

Let the grammar defined by the following set P:

S - AA/a
A— S8S/b

Transformation:
Replace Sin A — S§5/b,we get A — AAS/aS /b (already transformed)

A-—>aS/b/aSA/bA’
A" — AS/ASA

Thus, the resulting grammar (non-left-recursive) is defined by the following set P’

S - AA/a
A-—aS/b/aSA'/bA’
A5 AS/ASA

Definition

e Wesaythat A < B if and only if
A—+BaandBcV,ac (XUV)

* Obtaining the GNF:

a) Establish the linear order.

b) Substitutions of non-terminals.

Example

S~ AA/a
A aS/b/aSA"/bA’

A" AS/ASA
We have S < A and A" < A, so this means that the rule for A is in GNF.

Substitutions:

e FromAinS:
S —aS/bA'JaSA'AJ/bA'A/a [F1]
e FromAin A"
A" — aSS/bS/aS"A/bS'A'/aS'A'A/bA'SAA' [F2]

In the GNF grammar of G, G' is such that:
[F1],A — aS/b/aSA'/bA', [F2]

-

Algebraic Languages

° Proposition:
The class of algebraic languages is closed under union,

concatenation, mirror, and iteration.

° Note:
The class of algebraic languages is not closed under

intersection and complement.

* Theorem:
The class of languages recognized by pushdown automata is
equal to the class of languages generated by algebraic

grammars .

Double Star Lemma (Ogden's Lemma)"”

For every algebraic language L, there exists an integer k such that

for every word w € L with length |w| > k,

there is a factorization of w = apSvd with |uv| > 0 and |pfr| < k such that:
Yn e N a"u"B"v" € L

Example

Let's prove that L = {a"b"¢", n > 0} is not an algebraic language.
Suppose that the language L is algebraic and w is some word in L.

There exists n = 0 such that w = d"b"c", and it can be written in the form w = au vy, where the
oroperty a8¥* € L for all k > 0 must hold.

It is enough to find a k that does not satisfy the property, depending on the chosen factorization.
Let us take cv :dk;,u,: b"; B =c", v =c¢.

We form aB¥v* for k = 2 for example:
a?B2v? = d*b*c? # d™b" e, thus d"b"c™ ¢ L.

This leads to a contradiction, and thus the hypothesis is false. Therefore, the language {a"b"c™,n > 0} is

not algebraic.

