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Solution of series N◦3

Reminder 1: Solving First−order differential equations

1.Separable equations: These are equations which may be written in the form

y′ = f(y)g(t). To solve, you separate the variables, then integrate, making sure to

include one of the constants of integration:∫
1

f(y)
dy =

∫
g(t) dt+ C.

2.Linear equations: These are equations of this form y′ + p(t)y = q(t). Solution

Steps:

• Find the Integrating Factor: I(t) = e
∫
p(t)dt.

• Multiply the equation by I(t) to transform the left side into a derivative:

d

dt
(I(t)y) = I(t)q(t).

• Integrate both sides: I(t)y =
∫
I(t)q(t)dt+ C.

• Solve for y: y =
1

I(t)

(∫
I(t)q(t)dt+ C

)
.

3. Homogeneous equations: A first-order differential equation is homogeneous if

it can be written as:
dy

dx
= f

(y
x

)
. Solution Steps:

• Substitute v =
y

x
so that y = vx.

• Differentiate:
dy

dx
= v + x

dv

dx
.

• Substitute into the equation: v + x dv
dx

= f(v).

• Rearrange:
dv

f(v)− v
=
dx

x
.
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• Integrate both sides and solve for y.

4. Bernoulli equations: These are a lot like linear equations, they are equations

of this form: y′ + p(t)y = q(t)yn, n ∈ R− {0, 1}. To solve it, make the substitution

v = y1−n, so that v′ = (1 − n)y−ny′ in other words y−ny′ =
1

1− n
v′. Multiply the

original equation by y−n:

y−ny′ + p(t)y1−n = q(t)

Now make the substitution with v:
1

1− n
v′ + p(t)v = q(t). Multiply everything by

1− n and you have a linear equation, which you can solve to find v. Once you have

v, then use the equation y = v
1

1−n to find y.

5. Riccati equations: The general Form of the Riccati equation is: y′ = a(x)y2 +

b(x)y + c(x). Solution steps:

If a particular solution yp is known, use the substitution: y = yp +
1

v
to transform

it into the linear form:
dv

dx
+ (b + 2ayp)v = −a. Solve using the integrating factor.

Exercise 1:

1. y′ − 2xy = (1 − 2x)ex, y(0) = 5. The equation is linear, the homogeneous

solution yh is

y′ − 2xy = 0 =⇒ y′ = 2xy =⇒ y′

y
= 2x

=⇒ ln |y| =
∫

2x dx = x2 + c

=⇒ yh = Kex
2
, K = ±ec.

The particular solution is

yp = K(x)ex
2

=⇒ y′p = K ′(x)ex
2

+ 2xK(x)ex
2
.
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So

K ′(x)ex
2

+ 2xK(x)ex
2 − 2xK(x)ex

2
= (1− 2x)ex

=⇒ K ′(x)ex
2

= (1− 2x)ex

=⇒ K ′(x) = (1− 2x)ex−x
2

=⇒ K(x) =

∫
(1− 2x)ex−x

2
dx = ex−x

2

hence yp = ex−x
2
.ex

2
= ex. Then the generale solution is

y = hh + yp = Kex
2

+ ex.

For y(0) = 5, we get K + 1 = 5 =⇒ K = 4. So y = 4ex
2

+ ex

2. −2x+ yy′ = 0, y(1) = 1. We have

2x+ yy′ = 0 =⇒ y dy = 2x dx

=⇒
∫

y dy = 2
∫
x dx

=⇒ y2

2
= x2 + c

=⇒ y2 = 2x2 +K, where K ∈ R

We have y(1) = 1 =⇒ 1 = 2 + K =⇒ K = −1, then y2 = 2x2 − 1 or

y = ±
√

2x2 − 1

3. xy′ + (1 + x)y = 0, y(1) = 1. We have

xy′ + (1 + x)y = 0 =⇒ dy

y
= − x

1 + x
dx

=⇒
∫

dy

y
= −
∫

x

1 + x
dx = −

∫
1− 1

1 + x
dx

=⇒ ln |y| = −x+ ln |1 + x|+ c

=⇒ y = ±ec(1 + x)e−x

=⇒ y = K(1 + x)e−x, where K ∈ R
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We have y(1) = 1 =⇒ 1 = K2e−1 =⇒ K =
1

2
e. So

y =
1

2
(1 + x)e1−x

4. (4− x2)yy′ = 2(1 + y2). We have

(4− x2)yy′ = 2(1 + y2) =⇒ y dy

1 + y2
=

2 dx

4− x2

=⇒
∫

y dy

1 + y2
=

∫
2 dx

4− x2
=

1

2

∫
1

2− x
+

1

2 + x
dx

=⇒ 1

2
ln(1 + y2) =

1

2
(− ln |2− x|+ ln |2 + x|) + c

=⇒ ln(1 + y2) = ln

∣∣∣∣2 + x

2− x

∣∣∣∣+ c

=⇒ 1 + y2 = K

∣∣∣∣2 + x

2− x

∣∣∣∣ , K ∈ R∗

So y = ±
√
K

2 + x

2− x
− 1

5. y′ − 2xy = ex
2

sinx, y(0) = 1. The homogeneous equation is y′ − 2xy =

0 =⇒ y′

y
= 2x, so the homogeneous solution given by ln |y| = x2 + c. Hence

yh = Kex
2
, K = ±ec.

The particular solution is yp = K(x)ex
2

=⇒ y′p = K ′(x)ex
2

+ 2xK(x)ex
2
, then:

K ′(x)ex
2

+ 2xK(x)ex
2 − 2xK(x)ex

2
= ex

2
sinx

=⇒ K ′(x)ex
2

= ex
2

sinx

=⇒ K ′(x) = sinx

=⇒ K(x) = − cosx

therefore, yp = − cosxex
2
, and so the generale solution is given by y = yh+yp =

Kex
2 − cosxex

2
. For x = 0 =⇒ K = 2, so

y = 2ex
2 − cosxex

2
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6. xy′ + y = x, y(2) = 0. We have

xy′ + y = x =⇒ d

dx
(xy) = x

=⇒
∫

d(xy) =

∫
x dx

=⇒ xy =
x2

2
+ c

=⇒ y =
1

2
x+

c

x
.

We have y(2) = 0 =⇒ 0 =
1

2
2 +

c

2
=⇒ c = −2. So

y =
1

2
x− 2

x

7. y′ − 2y = − 2

1 + e−2x
, y(0) = 2. The integrating factor is

v(x) = e
∫
a(x) dx = e

∫
−2 dx = e−2x.

Multiplication of Equation (7) by e−2x gives

e−2xy′ − 2e−2xy = − 2e−2x

1 + e−2x

So

d

dx
(e−2xy) = − 2e−2x

1 + e−2x

then

e−2xy = −
∫

2e−2x

1 + e−2x
dx = ln(1 + e−2x) + c

and so

y = e2x ln(1 + e−2x) + ce2x.

Since y(2) = 0, we have
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2 = e0 ln(1 + e0) + ce0 =⇒ c = 2− ln 2

Therefore the solution to the initial-value problem is

e2x ln(1 + e−2x) + (2− ln 2)e2x

8. y′ −
(

2x− 1

x

)
y = 1, on ]0,+∞[. Resolution of the homogeneous equation:

y′ −
(

2x− 1

x

)
y = 0. An antiderivative of a(x) = 2x− 1

x
is A(x) = x2 − lnx,

so the solutions of the homogeneous equation are

yh = K exp (x2 − lnx) = K
1

x
ex

2

for any real constant K.

To find a particular solution, we will use the method of variation of constants

for the equation:

y′ −
(

2x− 1

x

)
y = 1

We assume a solution of the form:

yp = K(x)
1

x
ex

2

where K(X) is now a function to be determined. So

y′p = K ′(x)
1

x
ex

2
+K(x)

(
− 1

x2
+ 2

)
ex

2

hence

K ′(x)
1

x
ex

2
+K(x)

(
− 1

x2
+ 2

)
ex

2 −
(

2x− 1

x

)
K(x)

1

x
ex

2
= 1

K ′(x)
1

x
ex

2
= 1

K ′(x) = xe−x
2
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Thus, by choosing K(x) = −1

2
e−x

2
, we obtain the particular solution:

yp = −1

2
e−x

2 1

x
ex

2
= − 1

2x

Then, the generale solution is geven by:

y(x) = − 1

2x
+K

1

x
ex

2
, K ∈ R

9. xy′ + 3y = x2y2. We have

xy′ + 3y = x2y2 =⇒ y−2y′ +
3

x
y−1 = x

we put z = y1−n = y−1, then z′ = −y−2y′.

Inserting z = y−1 and z′ = −y−2y′ into the differential equation, we get

z′ − 3

x
z = x · · · · · · (1)

The integrating factor is

v(x) = e
∫
a(x) dx = e

∫
− 3
x
dx =

1

x3
.

Multiplication of Equation (1) by x3 gives

1

x3
z′ − 3

x4
z = − 1

x2

or

d

dx

(
1

x3
z

)
= − 1

x2

then

1

x3
z = −

∫
1

x2
dx =

1

x
+ k
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or z = y−1 = x2 + kx3, and so

y =
1

x2 + kx3

10. y′ + 2xy = −xy4. We have

y′ + 2xy = −xy4 =⇒ y−4y′ + 2xy−3 = −x

we put z = y1−n = y−3, hen z′ = −3y−4y′.

Inserting z = y−3 and z′ = −3y−4y′ into the differential equation, we get

−1

3
z′ + 2xz = −x

or

z′ − 6xz = 3x · · · · · · (2)

The integrating factor is

v(x) = e
∫
a(x) dx = e

∫
−6x dx = e−3x

2

Multiplication of Equation (2) by e−3x
2

gives

e−3x
2
z′ − 6xe−3x

2
z = 3xe−3x

2

or

d

dx

(
e−3x

2
z
)

= 3xe−3x
2

then

e−3x
2
z = −1

2
e−3x

2
+ C
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or z = y−3 = −1

2
+ Ce3x

2
=⇒ y =

1

−1
2

+ Ce3x2
. And so

y =

(
2

Ke3x2 − 1

) 1
3

, where K ∈ R

Exercise 2:

1. We have y = 2x =⇒ y′ = 2

(E) ⇐⇒ (x2 − 3x+ 2)2− 4x2 + 6x2 = 4x2 − 6x+ 4

= 4x2 − 6x+ 4 = 4x2 − 6x+ 4.

2. The resolution of the equation (E), we put y = z + 2x =⇒ y′ = z′ + 2. By

substituting into (E), we obtain

(x2 − 3x+ 2)z′z−2 − 1− xz = 0 · · · (F )

The equation (F ) is a Bernoulli equation. Dividing equation (F ) by z2 we

obtain:

(x2 − 3x+ 2)z′ − z2 − xz = 0

is Bernoulli equation α = 2, then

(x2 − 3x+ 2)z′z−2 − 1− xz−1 = 0 · · · (F1)

Then, we set: t = z−1

t = z−1 =⇒ z = t−1 =⇒ z′ = − t
′

t2
=⇒ z′z−2 = −t′

By replacing z−1 with t and z′z−2 accordingly in (F1), we obtain:

(x2 − 3x+ 2)t′ + xt = −1 · · · (F2)
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F2 is a first-order linear nonhomogeneous differential equation.

• The homogeneous solution th of (F2):

(x2 − 3x+ 2)t′ + xt = 0 · · · (F3)

So

(F3) ⇐⇒ (x3 − 3x+ 2)
dt

dx
= −xt⇐⇒ dt

t
=

−x
x3 − 3x+ 2

dx

⇐⇒ ln |t| =
∫

−x
x3 − 3x+ 2

dx =

∫
−x

(x− 1)(x− 2)
dx

=

∫
dx

x− 1
− 2

∫
dx

x− 2

= ln |x− 1| − 2 ln |x− 2|+ C = ln

(
|x− 1|

(x− 2)2

)
+ C, C ∈ R

Hence th = K
x− 1

(x− 2)2
, K ∈ R.

• The particular solution tp of (F2). We use the variation of the constant,

we set

tp = K(x)
x− 1

(x− 2)2

We replace t with K(x)
x− 1

(x− 2)2
in equation (F2), we obtain

(x− 1)2

x− 2
K ′(x) = −1 =⇒ K ′(x) = − x− 2

(x− 1)2

=⇒ K(x) = −
∫

x− 2

(x− 1)2
dx = −

∫
dx

x− 1
+

∫
dx

(x− 1)2

= − ln |x− 1|+
(
− 1

x− 1

)
+ C

then tp =

(
− ln |x− 1|+

(
− 1

x− 1

))(
x− 1

(x− 2)2

)
.

So, the general solution of (F2) is

t = K
x− 1

(x− 2)2
+ tp, K ∈ R.

The general solution of (F ) is
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z =
1

K
x− 1

(x− 2)2
+ tp

, K ∈ R.

Hence, the general solution of (E) is

y =
1

K
x− 1

(x− 2)2
+ tp

+ 2x, K ∈ R.

Reminder 2: Solving Second−order differential equations

A second-order differential equation has the general form: a(x)y′′+ b(x)y′+ c(x)y =

f(x). Where y′′ is the second derivative, y′ is the first derivative, and f(x) is a given

function. There are two main types of second-order differential equations:

1. Homogeneous Equation f(x) = 0:

Solution method

• Assume a solution of the form: yh = erx.

• Substitute into the equation to obtain the characteristic equation: ar2 +

br + c = 0.

• Cases of solutions:

– Distinct real roots (r1 6= r2):

yh = C1e
r1x + C2e

r2x.

– Repeated root r1 = r2 = r:

yh = (C1 + C2x)erx.

– Complex roots r = α± iβ:
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yh = eαx(C1 cos(βx) + C2 sin(βx))

2. Non-Homogeneous Equation (f(x) 6= 0):

Solution method

• Find the homogeneous solution yh by solving ay′′ + by′ + cy = 0.

• Find a particular solution yp using one of the following methods:

– Method of Undetermined Coefficients: used when f(x) is a polyno-

mial, exponential, or trigonometric function.

– Variation of Parameters: A general method that uses the fundamen-

tal solutions of the homogeneous equation.

• General Solution: y = yh + yp.

Exercise 3:

1. y′′ + y′ − 6y = 4ex, y(0) = 1, y′(0) = −22. The homogeneous solution yh:

y′′ + y′ − 6y = 0

We set yh = erx =⇒ y′h = rerx, and y′′ = r2erx, so

r2erx + rerx − 6erx = 0 =⇒ (r2 + r − 6)erx = 0 =⇒ r2 + r − 6 = 0.

Compute M= 1 + 24 = 25 > 0, then

r1 =
−1− 5

2
= −3, and r2 =

−1 + 5

2
= 2

hence the homogeneous soltion given by yh = C1e
−3x +C2e

2x, for all C1, C2 ∈

R.

Now, we seek the particular solution in the form yp = aex, then
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y′p = y′′p = aex

therefore

aex + aex − 6aex = 4ex =⇒ −4aex = 4ex =⇒ a = −1

so yp = −ex. Then the generale solution is given by:

y = yh + yp = C1e
−3x + C2e

2x − ex, ∀C1, C2 ∈ R.

For x = 0, we have
y(0) = 1

y′(0) = −22

=⇒


C1 + C2 − 1 = 1

−3C1 + 2C2 − 1 = −22

=⇒ C1 = 5, and C2 = −3.

So y = 5e−3x − 3e2x − ex

2. y′′ − 3y′ + 2y = (1− 2x)ex. The associated homogeneous equation is:

y′′ − 3y′ + 2y = 0

which has the characteristic equation:

r2 − 3r + 2 = 0

It has two real roots: r1 = 1 and r2 = 2. Thus, the solutions of the homoge-

neous equation are:

yh = C1e
x + C2e

2x, C1, C2 ∈ R.

And yp = x(ax+b)ex because α = 1 is a solution of the characteristic equation.

yp = (ax2 + bx)ex =⇒ y′p = [ax2 + (2a+ b)x+ b] ex

=⇒ y′′p = [ax2 + (4a+ b)x+ 2a+ 2b] ex
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Substituting into equation (2), we obtain:

[ax2 + (4a+ b)x+ 2a+ 2b] ex − 3 [ax2 + (2a+ b)x+ b] ex + 2x(ax+ b)ex =

(1− 2x)ex

⇐⇒ −2ax+ 2a− b = 1− 2x

Thus

=⇒


−2a = −2

2a− b = 1

=⇒


a = 1

b = 1

Hence yp = (x2 + x)ex. Thus, the solutions of equation (2) are:

y = yh + yp = C1e
x + C2e

2x + (x2 + x)ex, ∀C1, C2 ∈ R

3. y′′ − 2y′ + 2y = 5 cos x, y(0) = 1, y′
(π

2

)
= −2

(
e
π
2 + 1

)
. The associated

homogeneous equation is: y′′ − 2y′ + 2y = 0, which has the characteristic

equation: r2 − 2r + 2 = 0. It has two complex roots:

r1 = 1− i, r2 = 1 + i

Thus, the solutions of the homogeneous equation are:

yh = ex(C1 cosx+ C2 sinx), C1, C2 ∈ R.

The particular solution in the form yp = a1 cosx+ a2 sinx

yp = a1 cosx+ a2 sinx =⇒ y′p = −a1 sinx+ a2 cosx

=⇒ y′′p = −a1 cosx− a2 sinx

Substituting into equation (3), we obtain:
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−a1 cosx− a2 sinx− 2(−a1 sinx+ a2 cosx) + 2(a1 cosx+ a2 sinx) = 5 cosx

⇐⇒ (a1 − 2a2) cosx+ (2a1 + a2) sinx = 5 cos x

so a1 = 1, and a2 = −2, hence

yp = cosx− 2 sinx.

Thus, the generale solution is

y = yh + yp = ex(C1 cosx+ C2 sinx) + cos x− 2 sinx, C1, C2 ∈ R

And 
y(0) = 2

y′
(π

2

)
= −2

(
e
π
2 − 1

) =⇒


C1 = 1

C2 = −2

So

y = ex(cosx− 2 sinx) + cos x− 2 sinx

4. y′′ + 4y = 2 sinx cosx ⇐⇒ y′′ + 4y = sin(2x). The associated homogeneous

equation is:

y′′ + 4y = 0,

which has the characteristic equation:

r2 + 4r = 0.

It has two complex conjugate roots:

r1 = 2i, and r1 = −2i
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Thus, the solutions of the homogeneous equation are:

yh = A cos(2x) +B sin(2x), A, B ∈ R.

And since α + iβ = 2i is a root of the characteristic equation, we seek a

particular solution in the form:

yp = x(a cos(2x) + b sin(2x))

where a and b are constants to be determined. Substituting the expression of

yp into equation (4), we obtain:

x [−4a cos(2x)− 4b sin(2x)] + 4b cos(2x)− 4a sin(2x) +

4x [a cos(2x) + b sin(2x)] = sin(2x)

⇐⇒ 4b cos(2x)− 4a sin(2x) = sin(2x)

From this, we derive the system:
4b = 0

−4a = 1

⇐⇒


a = −1

4

b = 0

And consequently:

yp = −1

4
cos(2x).

The general solution of equation (4) is:

y = A cos(2x) +B sin(2x)− 1

4
cos(2x), A, B ∈ R

5. y′′ − 4y′ + 4y = xe2x, y(0) = 1, y′(0) = 4. The associated homogeneous

equation is:
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y′′ − 4y′ + 4y = 0,

which has the characteristic equation:

r2 − 4r + 4 = 0.

It has a double root: r = 2. Thus, the solutions of the homogeneous equation

are:

yh = (C1 + C2x)e2x, C1, C2 ∈ R.

Since α = 2 is a double root of the characteristic equation, we seek a particular

solution in the form:

yp = x2(ax+ b)e2x

Substituting the expression of yp into equation (5), we obtain: a =
1

6
, b = 0,

so yp =
1

6
x3e2x. Hence the generale solution is:

y = (C1 + C2x)e2x +
1

6
x3e2x, C1, C2 ∈ R

6. y′′ + 4y = e3x cos(2x). The associated homogeneous equation is:

y′′ + 4y = 0

which has the characteristic equation:

r2 + 4 = 0

Solving for r: r2 = −4 =⇒ r = ±2i. Since the characteristic roots are complex

conjugates 2i and −2i, the general solution of the homogeneous equation is

given by:
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yh = A cos(2x) +B sin(2x), A, B ∈ R.

And since 3+2i is not a root of the characteristic equation, we seek a particular

solution in the form:

yp = e3x(a cos(2x) + b sin(2x))

where a and b are constants to be determined. Substituting the expression of

yp into equation (6) and identifying terms, we obtain:
9a+ 12b = 1

9b− 12a = 0

⇐⇒


a =

1

25

b =
4

75

Thus, the particular solution yp can be written in the form:

yp = e3x
(

1

25
cos(2x) +

4

75
sin(2x)

)

The general solution of equation (6) is:

y = A cos(2x) +B sin(2x) + e3x
(

1

25
cos(2x) +

4

75
sin(2x)

)
, A, B ∈ R

Exercise 4:

We have

y′′ + 2y′ + 4y = xex · · · · · · (E)

1. Solvig the homogenuous equation y′′+2y′+4y = 0. The characteristic equation

is: r2 + 2r + 4 = 0. It has two complex conjugate roots:

r1 = −1− i
√

3, and r2 = −1 + i
√

3

Thus, the solutions of the homogeneous equation are:
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yh = e−x(C1 cos(
√

3x) + C2 sin(
√

3x)), C1, C2 ∈ R.

2. The particular solution yp. Since α = 1 is not a root of the characteristic

equation, we seek a particular solution in the form:

yp = (ax+ b)ex

so

yp = (ax+ b)ex ⇐⇒ y′p = aex + (ax+ b)ex

⇐⇒ y′′p = 2aex + (ax+ b)ex

Substituting the expression of yp into equation (E) and identifying terms, we

obtain:

(7ax+ 4a+ 7b)ex = xex

We find, after identifying the coefficients:

a =
1

7
, and b = − 4

49

Thus, the particular solution yp can be written in the form:

yp =

(
1

7
x− 4

49

)
ex

Then the generale solution is given by

y = yp+yh = e−x
(
C1 cos(

√
3x) + C2 sin(

√
3x)
)

+

(
1

7
x− 4

49

)
ex, C1, C2 ∈ R.

3. Let h be a solution of (E), satisfying h(0) = 1 and h(1) = 0. Let us define:

h(x) = e−x
(
C1 cos(

√
3x) + C2 sin(

√
3x)
)

+

(
1

7
x− 4

49

)
ex, C1, C2 ∈ R.

Then, we determine the values of C1, and C2

h(0) = 1, and h(1) = 0 =⇒ C1 =
53

49
, and C2 = −53 cos(

√
3) + 3e2

49 sin(
√

3)
.


