

Hypothesis Testing

Contents

4	Нур	othesi	s Testing	1
	4.1	Good	ness-of-Fit Test	3
		4.1.1	Objective	3
		4.1.2	Notation	3
		4.1.3	Steps of the Test	4
	4.2	Homo	ogeneity Test	5
		4.2.1	Objective	5
		4.2.2	Notation	5
		4.2.3	Steps of the Test	5
	4.3	Indep	endence Test	6
		4.3.1	Objective	6
		4.3.2	Steps of the Test	6

Statistical Hypothesis

Definition 4.0.1. *A statistical hypothesis is a statement concerning the values of parameters in a population.*

- Null hypothesis H₀: the hypothesis we want to test.
- Alternative hypothesis H₁: the negation of H₀.

Hypothesis Test

Definition 4.0.2. *A procedure aimed at providing a decision rule to choose between two statistical hypotheses based on sample results.*

Chi-Square Tests

Definition 4.0.3. *Chi-square tests are based on the* χ^2 *statistic introduced by Karl Pearson. Their main purpose is to compare distributions. These tests can be applied to qualitative variables.*

There are three types of chi-square tests:

- Goodness-of-fit test
- Homogeneity test
- Independence test

4.1 Goodness-of-Fit Test

4.1.1 Objective

Compare an observed sample distribution with a theoretical distribution.

4.1.2 Notation

- *T_i*: expected (theoretical) frequencies
- *O_i*: observed frequencies
- *n*: total number of observations
- *k*: number of categories

4.1.3 Steps of the Test

1. Formulate hypotheses

- *H*₀: The observed distribution matches the theoretical distribution
- H_1 : The observed distribution differs from the theoretical one
- 2. Calculate expected frequencies Validity condition: all $T_i \ge 5$
- 3. Test statistic:

$$\chi_c^2 = \sum_{i=1}^k \frac{(O_i - T_i)^2}{T_i}$$

4. **Critical value**: found in chi-square table with df = k - 1

$$\chi^2_T = \chi^2_{(k-1,\ 1-\alpha)}$$

5. Decision:

- If $\chi_c^2 \leq \chi_T^2$: Accept H_0
- If $\chi_c^2 > \chi_T^2$: Reject H_0

Examples 4.1.1. In a maternity hospital, 100 births were observed: 44 boys and 56 girls. Is this observation consistent with national statistics, which state 53% boys and 47% girls?

Solution:

Choice of test: Chi-square goodness-of-fit test

1. Hypotheses

- *H*₀: *The observed distribution matches the national statistics*
- *H*₁: *The observed distribution differs*
- 2. Expected frequencies

Gender	Observed O_i	National %	Expected T _i
Boys	44	0.53	53
Girls	56	0.47	47
Total	100	1	100

All $T_i \ge 5 \rightarrow$ the test is valid.

3. Chi-square statistic:

$$\chi_c^2 = \frac{(44 - 53)^2}{53} + \frac{(56 - 47)^2}{47} = 3.25$$

4. Critical value:

$$df = 2 - 1 = 1, \quad 1 - \alpha = 0.95, \quad \chi_T^2 = \chi_{(1, 0.95)}^2 = 3.84$$

- 5. **Decision**: Since $\chi_c^2 < \chi_T^2$, we accept H_0
- 6. Conclusion: The observed distribution is consistent with the national distribution.

4.2 Homogeneity Test

4.2.1 Objective

Compare two or more observed distributions across different samples.

4.2.2 Notation

- *r*: number of rows (groups)
- *c*: number of columns (categories)
- *n*: total observations

4.2.3 Steps of the Test

1. Formulate hypotheses

- *H*₀: The observed distributions are equivalent
- *H*₁: The observed distributions are not equivalent

2. Compute expected frequencies

Let:

$$n_i = \sum_j O_{ij}, \quad n_j = \sum_i O_{ij}, \quad T_{ij} = \frac{n_i \cdot n_j}{n}$$

Condition: All $T_{ij} \ge 5$

3. Test statistic:

$$\chi_c^2 = \sum_{j=1}^r \sum_{i=1}^c \frac{(O_{ij} - T_{ij})^2}{T_{ij}}$$

4. Critical value:

df =
$$(c - 1)(r - 1)$$
, $\chi_T^2 = \chi_{(df, 1-\alpha)}^2$

- 5. Decision:
 - If $\chi_c^2 \leq \chi_T^2$: Accept H_0
 - If $\chi_c^2 > \chi_T^2$: Reject H_0

Examples 4.2.1. Two drugs, A and B, were tested on two patient groups. The results:

Outcome	Α	В
Symptom disappeared	100	220
Symptom persisted	40	80
Aggravation	20	70
Side effects	30	40

Can we say that both treatments have the same effects? Use $\alpha = 0.05$

Solution

1. Choice of test: Chi-square test of homogeneity

2. Hypotheses

- *H*₀: *Treatments are equivalent*
- *H*₁: *Treatments are not equivalent*
- 3. Expected frequencies (partial): Calculation of Expected Frequencies: Contingency Table

	Disappearance		Persistence		Worsening		Side Effect		Total
	O _{ij}	T_{ij}							
A	100	101.33	40	38.00	20	28.50	30	22.16	190
В	220	218.66	80	82.00	70	61.50	40	47.83	410
Total	320		120		90		70		600

All $T_{ij} \ge 5 \rightarrow$ the test is valid.

4. Chi-square statistic:

$$\chi^2_c = 7.94$$

5. Critical value:

$$df = (4-1)(2-1) = 3, \quad \chi_T^2 = \chi_{(3,\ 0.95)}^2 = 7.815$$

- 6. **Decision**: Since $\chi_c^2 > \chi_T^2$, we reject H_0
- 7. Conclusion: The two treatments do not have the same effect.

4.3 Independence Test

4.3.1 Objective

4.3.2 Steps of the Test

Study the relationship between two variables in a single sample.

The steps for conducting a Chi-square Test of Independence are as follows:

1. Formulate Hypotheses

- (H_0) : The two variables are independent (no association).
- (H_1) : The two variables are dependent (there is an association).

2. Calculate Expected Frequencies

- The expected frequency for each cell in the table is calculated using the formula:

$$T_{ij} = \frac{(row \ total)_i \times (column \ total)_j}{grand \ total}$$

3. the Chi-square Test Statistic - The formula for the chi-square statistic is:

$$\chi_c^2 = \sum_{j=1}^r \sum_{i=1}^c \frac{(O_{ij} - T_{ij})^2}{T_{ij}}$$

- Where:

- O_{ij} = observed frequency

- T_{ij} = expected frequency

- r = number of rows.

c = number of columns.

Condition: All $T_{ij} \ge 5$.

4. Find the Critical Value

- Using a chi-square low table, find the critical value (χ_T^2) corresponding to the calculated degrees of freedom and chosen significance level (α) (typically 0.05), and : df = (r - 1)(c - 1).

5. Decision Rule

- If the test statistic χ_c^2 is greater than the critical value χ_T^2 , reject the null hypothesis.

- If χ_c^2 is less than or equal to χ_T^2 , fail to reject the null hypothesis.

6. Conclusion

- Reject H_0 : There is a significant association between the two variables (they are dependent).
- Fail to reject H_1 : There is no significant association between the two variables (they are independent).

Example 4.3.1. A collective food poisoning incident occurred among primary school students. A doctor was assigned to investigate and produced the following table:

	Sick	Healthy
Chocolate Ice Cream	69	83
No Ice Cream	31	17

Question: Is food poisoning related to the consumption of chocolate ice cream? *Solution*

Choice of test: Chi-square test of independence

1. Hypotheses

- H_0 : No association between food poisoning and ice cream consumption
- *H*₁: *There is an association*

2. Expected frequencies:

All expected $T_{ij} \ge 5 \rightarrow$ the test is valid.

	Sick		Healthy		Row Total <i>n_i</i>
	O _{ij}	T_{ij}	O _{ij}	T_{ij}	
Chocolate Ice Cream	69	76	83	76	152
No Ice Cream	31	24	17	24	48
Column Totals <i>n_j</i>	100	100	100	100	<i>n</i> = 200

3. Chi-square statistic:

$$\chi^2_c = 5.4$$

4. Critical value:

$$df = (2-1)(2-1) = 1, \quad \chi_T^2 = \chi_{(1, \ 0.95)}^2 = 3.841$$

- 5. **Decision**: Since $\chi_c^2 > \chi_T^2$, we reject H_0
- 6. *Conclusion*: There is a link between food poisoning and chocolate ice cream consumption.