
Centre Universitaire de Mila

2nd year of Computer Science degree (LMD)

Module : Operating System 1

Bessouf Hakim

1

Memory Management

CHAPTER 5

1. Objectives of a Memory Manager
2. Functions
3. Memory Sharing Modes
4. Memory Protection
5. Code Sharing

Introduction

• Main memory is an essential part of the
computer; it is used to load programs (data +
code) executed by the processor.

• Main memory is divided into multiple cells called
memory words, each with a unique address. This
address is used by the processor to read and
write information.

The Memory Manager

• Memory Sharing: The manager must
allocate main memory among multiple
processes.

• Memory Protection: The manager must
prevent a process from accessing another
process's memory space to avoid conflicts.

• Reallocation: The manager must rearrange
(reallocate) processes in main memory to
free up space and load other processes.

It is a module of the operating system responsible for managing main
memory. Its objectives are:

The Memory Manager

A memory manager must perform the following functions:

Allocate memory space to processes: The memory manager must
determine a technique for memory allocation.

Free memory space: The memory manager must establish a method to
release memory space when a process completes its execution.

Identify free memory sections: The memory manager must keep track
of each part of main memory to manage it efficiently.

Memory Sharing Modes
(Memory Allocation Strategies)

• Single Continuous Allocation

In this strategy, only one program is executed at
a time (monoprogramming). Main memory is
divided into two parts:

• The first part contains the operating system.

• The second part contains the user program

Flowchart of Memory Allocation with a Single

Continuous Zone

Note: This allocation strategy is

inefficient because part of the memory

may remain unused.

Memory Sharing Modes
(Memory Allocation Strategies)
• Multiple Partitions

In this strategy, main memory is divided into multiple partitions, with
each partition containing a process. This allows multiple processes to
reside in main memory simultaneously (multiprogramming).

➢Static Multiple Partitions

➢Dynamic Multiple Partitions

1. Static Multiple Partitions

1. Static Multiple Partitions:

In this model, the size and number of partitions are fixed in advance during
the operating system startup. To execute a program, there are two possible
cases:

1.1 The program to be executed is in absolute code:

In this case, the program's addresses are physical addresses, meaning the
program is tied to a specific partition and cannot execute in another
partition.

To manage program execution, the memory manager assigns a queue of
waiting processes to each partition, as illustrated in the following figure.

A queue of programs is assigned to each static partition.

Note: The drawback of absolute

loading is that some partitions

may remain free while programs

are queued in another partition.

1. Static Multiple Partitions

1.2 The program to be executed is in relocatable code:

In this case, the program's addresses are logical addresses (not absolute), allowing
the program to be loaded and executed in any partition with sufficient size.

The memory manager assigns a single queue for all processes.

Execution Process:

• The memory manager searches for a free partition with sufficient size to load the
program.

• The program is loaded into the selected partition.

• The memory manager converts logical addresses into physical addresses based
on the partition used.

• Address conversion: The starting address of the partition is added to all logical
addresses in the program to obtain the corresponding physical addresses.

A single queue of programs is assigned to all static

partitions.

1. Static Multiple Partitions

• Fragmentation Problem

Internal Fragmentation:

When a program is loaded into a partition
and the program size is smaller than the
partition size, some memory remains
unused. This is known as internal
fragmentation.

1. Static Multiple Partitions

• Fragmentation Problem
External Fragmentation :

If the size of a program is larger than
each of the free partitions but smaller
than the sum of all free partitions,
then the program cannot be loaded.
In this case, we say there is external
fragmentation.

2. Dynamic Multiple Partitions

• The waste of main memory due to fragmentation in static multiple
partitioning led to the dynamic multiple partitioning scheme.

• In this scheme, memory is partitioned dynamically on demand, and
programs are allocated partitions exactly equal to their sizes.

• When a program finishes execution, its partition is reclaimed to be
allocated to another program.

• If a free partition is adjacent to another free partition, the two are
merged into a single larger partition.

2. Dynamic Multiple Partitions

2. Dynamic Multiple Partitions

• Program placement in partitions is done
according to different strategies:

First Fit Strategy:

In this strategy, the memory manager places
the program in the first available partition that
is large enough to accommodate the program.

2. Dynamic Multiple Partitions

Best Fit Strategy:

In this strategy, the memory manager places
the program in the smallest available partition
that is large enough to accommodate the
program.

2. Dynamic Multiple Partitions

Worst Fit Strategy:

In this strategy, the memory manager places the
program in the largest available partition that is
large enough to accommodate the program.

2. Dynamic Multiple Partitions

The First Fit strategy is fast but leads to significant memory loss due to
fragmentation.

The Best Fit and Worst Fit strategies are slower because they require
searching through all available free partitions.

Note: Simulations have shown that the first-fit strategy is better than the
best-fit strategy, and both strategies are better than the worst-fit
strategy.

2. Dynamic Multiple Partitions

• Memory Compaction: Regardless of the
allocation strategy used, there is always
external fragmentation.

• Compaction involves grouping all unused
memory partitions into a single larger
partition in which programs can be loaded.

• Note: The compaction operation is very
time-consuming. For example, if we have a
machine with 1 GB of RAM that can copy 4
bytes in 20 ns, it will take 5 seconds to
compact the entire memory.

Memory Sharing Modes
(Memory Allocation Strategies)
• Segmentation:

The program is divided into several
segments, each corresponding to a logical
entity (main program, procedures and
functions, data structures, etc.).

A Pascal compiler, for example, produces
different segments for:

➢Global variables,

➢The procedure call stack,

➢The code for each procedure or function,

➢The local variables of each function.

Inside a segment, addresses are relative to the start of the segment (they start from 0 to
the size of the segment).

The segments of the same program can be loaded into separate memory spaces, making
central memory management more efficient.

Each running program is associated with a segment table, which for each segment of the
program provides the base (starting address) and the size of the segment in memory cells
(MC).

• The program addresses are logical addresses. A logical address specifies the
segment and the displacement within the segment.

• The correspondence between the program's logical address and the physical
address in main memory is made using the program's segment table as follows:

• The logical address consists of the segment number s and the offset
(displacement) d within the segment. Logical address = <s, d>

• The segment number s is used as an index in the segment table to find the base
address of the segment in main memory and calculate the physical address.

Note: The segment s must be less than the length
of the segment table, and the displacement d
within the segment must be between 0 and the
size of the segment. Otherwise, an addressing
error will occur.

Modes de partage de la mémoire
(stratégies d'allocation de la mémoire)
• Paging

In paging, main memory (MC) is divided into several
partitions of equal and fixed size, called physical
pages.

Similarly, the program's address space is divided into
several partitions called logical pages.

The size of the logical pages is equal to the size of
the physical pages.

A program can be loaded into non-contiguous
physical pages, which helps eliminate the problem
of external fragmentation.

• Each running program is associated with a page table that maps logical
pages to physical pages in main memory (MC).

• Each address generated by the processor during the execution of a
program is divided into two parts: a logical page number p and a
displacement d

Note: Paging eliminates the problem

of external fragmentation, but the

issue of internal fragmentation

remains present.

Swapping

Sometimes the size of the main memory is insufficient to load all the programs
waiting for execution.

One solution is to temporarily save programs that are blocked (waiting for I/O or an
event) in secondary memory (usually the hard disk) and load other programs into
the freed partitions.

The operation is carried out as follows:

➢A program is fully loaded into main memory (Swap-in).

➢The program will remain in main memory until its termination or blocking.

➢In case of blocking, the program can be transferred to secondary memory (Swap-
out).

➢One or more new programs are loaded into the freed partition.

➢Swapping is very time-consuming due to the transfer time of programs from
secondary memory.

Virtual memory

• In the previously discussed modes, if the size of a program is larger
than the size of main memory, the program cannot be executed.
Virtual memory involves providing the program with a virtual address
space that is independent of physical addresses.

• The size of the virtual address space can be much larger than the size
of the main memory.

• To execute programs, the system uses secondary memory (usually the
hard disk) to store part of the program in execution. The program is
therefore loaded in parts and executed in main memory.

• To implement virtual memory, paging or segmentation is typically
used.

Paged virtual memory

• In paged virtual memory, both the
virtual address space and the
physical address space are divided
into pages of the same size. The
number of virtual pages may be
greater than the number of physical
pages. Virtual pages are stored in
secondary memory and loaded into
main memory as needed.

Paged virtual memory

• To translate between virtual address and physical address in main memory
(MC), the page table is used.

• The page table contains information about each virtual page of a process.
Among this information, we can mention:

- A presence bit that indicates whether the page is present in main memory
or not.
0 → the page is not in main memory,
1 → the page is in main memory,

- The location of the page in secondary memory,
- The memory address of the page if it is loaded in main memory,
- A modified bit that indicates whether the page has been modified or not. If
the page has been modified, it must be copied back to secondary memory.

Paged virtual memory

• The translation between virtual address and physical address is
performed by a specific hardware component integrated into the
processor, called the Memory Management Unit (MMU).

• This unit intercepts the virtual address generated by the processor
(which accesses data or an instruction) and transforms it into the
corresponding physical address.

Paged virtual memory

The execution of a process for translating between virtual address and physical
address is carried out as follows:

• The virtual address of an instruction is given by the program counter.

• The virtual address is divided into a page number p and a displacement d.

• The page number p is used as an index to access the page table.

• The system checks if the referenced page p is present in main memory using the
presence bit in the page table.

• If the page is not in main memory, a page fault occurs. In this case, the system
must load the corresponding page from secondary memory into main memory.

• If the referenced page is in main memory, the physical address is calculated from
the physical page number and the displacement d.

• Finally, access to main memory is made.

Page Replacement Strategies

• When a memory reference causes a page fault (when the page is not in main
memory), the system must free up memory to load the referenced page.

• The replacement strategy specifies which page should be evicted from main
memory to free up space. The chosen page is called the victim page.

• Replacement algorithms include:

- FIFO (First In, First Out)

- LRU (Least Recently Used)

- Optimal Replacement Algorithm

- Second Chance Algorithm

- The Clock Page Replacement Algorithm

Page Replacement Strategies

FIFO Algorithm

• This algorithm chooses to replace the
oldest page in main memory.
Advantage: It is very easy to implement.
Disadvantage: The oldest page is
replaced even if it is frequently used,
which can negatively impact
performance.

Page Replacement Strategies

LRU Algorithm (Least Recently Used)

• This algorithm selects the page that has
been used least recently.

Advantage: It reduces the number of
page faults.

Disadvantage: It is difficult to implement
because it requires tracking and ordering
pages based on their usage to determine
the least recently used one.

Page Replacement Strategies

• Optimal Replacement Algorithm

In this algorithm, the page that will not be referenced for the longest
time in the future is selected for replacement.

Advantage: It is the optimal algorithm, minimizing page faults as much
as possible.

Disadvantage: It is difficult to implement because predicting future
page references is not feasible.

Page Replacement Strategies

The Second-Chance Page Replacement Algorithm:

• it is a modification of FIFO that improves efficiency by avoiding
the eviction of frequently used pages. It inspects the
reference (R) bit of the oldest page in memory.

• If the R bit is 0, the page is both old and unused, so it is
replaced immediately.

• If the R bit is 1, the bit is cleared, and the page is moved to the
end of the list, as though it had just arrived in memory.

• The search then continues for a page to evict.

• The algorithm ensures that only old, unused pages are evicted. If all pages have been
referenced, Second-Chance degenerates into pure FIFO, as it cycles through the pages
until it finds one with a cleared R bit to evict. The algorithm always terminates when a
page is evicted.

Page Replacement Strategies

• The Clock Page Replacement Algorithm
improves upon the second-chance
algorithm by avoiding the inefficiency of
constantly moving pages around a list.

• Instead, it organizes all page frames in a
circular list resembling a clock.

• The hand points to the oldest page.

• When a page fault occurs, the page
pointed to by the hand is checked.

• If its R bit is 0, the page is evicted and replaced with the new page, and the hand
moves one position.

• If the R bit is 1, it is cleared, and the hand advances to the next page.

• This process repeats until a page with R = 0 is found and evicted. The algorithm is
named "clock" due to its circular structure.

Memory Protection

In a computer system, it's essential to protect memory blocks from
unauthorized access, for example due to programming errors. There
are several protection techniques:

• Case of a Single Contiguous Memory Area
In this case, memory is divided into two regions: the operating system
area and the user program area.
The operating system's partition must be protected from access by
user programs. This protection is ensured by specific hardware that
checks each referenced address against a boundary address.
The referenced address must be greater than or equal to the
boundary address of the operating system area.

Memory Protection

Case of Fixed Multiple Partitions
In this case, two registers are used to indicate the lowest and highest
addresses that bound the program. Each referenced address is
checked using these two registers.

• Case of Segmentation and Paging
In this case, bits are associated with each page or segment, indicating
whether the process is allowed to access those pages or segments.

Code Sharing Between Programs

• Sharing code between programs helps save memory space and program
loading time.

• For example, consider a system that supports 40 users, each running a text
editor. If the editor's code is 30 KB and each user's data occupies 5 KB, the
total memory required without sharing would be: (30+5)×40=1400KB.

• However, if the editor's code is shared among all users, only one copy of the
code is needed. The memory required would then be: 30+(5×40)=230KB.

• To allow a memory region to be shared by multiple processes, this region
must not be modified during the execution of the processes (i.e., it must be
read-only).

Code Sharing Between Programs

• In the case of paging, to share a set of pages between multiple
processes, the pages are loaded into memory only once. Then, an
entry for each shared page is added to the page table of every
process that needs access.

• In the case of segmentation, to share one or more segments between
multiple processes, the segments are also loaded into memory only
once. An entry for each shared segment is added to the segment
table of every concerned process.

	Slide 1: Centre Universitaire de Mila 2nd year of Computer Science degree (LMD)
	Slide 2: Memory Management
	Slide 3: Introduction
	Slide 4: The Memory Manager
	Slide 5: The Memory Manager
	Slide 6: Memory Sharing Modes (Memory Allocation Strategies)
	Slide 7
	Slide 8: Memory Sharing Modes (Memory Allocation Strategies)
	Slide 9: 1. Static Multiple Partitions
	Slide 10
	Slide 11: 1. Static Multiple Partitions
	Slide 12
	Slide 13: 1. Static Multiple Partitions
	Slide 14: 1. Static Multiple Partitions
	Slide 15: 2. Dynamic Multiple Partitions
	Slide 16: 2. Dynamic Multiple Partitions
	Slide 17: 2. Dynamic Multiple Partitions
	Slide 18: 2. Dynamic Multiple Partitions
	Slide 19: 2. Dynamic Multiple Partitions
	Slide 20: 2. Dynamic Multiple Partitions
	Slide 21: 2. Dynamic Multiple Partitions
	Slide 22: Memory Sharing Modes (Memory Allocation Strategies)
	Slide 23
	Slide 24
	Slide 25: Modes de partage de la mémoire (stratégies d'allocation de la mémoire)
	Slide 26
	Slide 27: Swapping
	Slide 28: Virtual memory
	Slide 29: Paged virtual memory
	Slide 30: Paged virtual memory
	Slide 31: Paged virtual memory
	Slide 32: Paged virtual memory
	Slide 33: Page Replacement Strategies
	Slide 34: Page Replacement Strategies
	Slide 35: Page Replacement Strategies
	Slide 36: Page Replacement Strategies
	Slide 37: Page Replacement Strategies
	Slide 38: Page Replacement Strategies
	Slide 39: Memory Protection
	Slide 40: Memory Protection
	Slide 41: Code Sharing Between Programs
	Slide 42: Code Sharing Between Programs

