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Chapiter 1: Mathematics Revision

1. Introduction: Mathematics Revision

This lesson provides a mathematical revision covering fundamental concepts essential for
physics and engineering applications. We will review the elements of length, surface area,
and volume in different coordinate systems, as well as important mathematical operators
and calculus techniques.

2. Elements of Length, Surface Area, and Volume in Differ-
ent Coordinate Systems

We will analyze the fundamental differential elements in the three primary coordinate
systems: Cartesian, cylindrical, and spherical. Understanding these elements is crucial for
evaluating integrals in physics and engineering.

2.1 Cartesian Coordinate System

A Cartesian coordinate system is defined by an origin point O and three mutually per-
pendicular axes (Ox,Oy,Oz). The unit vectors along these axes are i,j,k. Any point M in
space is represented by the position vector:

−→
R =−−→

OM = xi+ yj+ zk

Figure 1: Cartesian basis (a) Position vector and (b) elementary displacement and volume
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Example: Consider a straight-line motion along the x-axis where x = 2t, y= 3, and z = 0.
The velocity vector is given by:

v= d
−→
R

dt
= d

dt
(2ti+3j+0k)= 2i

Differential Length Element: The differential displacement is given by:

d
−−→
OM = d

−→
l = dxi+d yj+dzk

Differential Surface Element: The surface element depends on the plane of integra-
tion:

dSx = d ydz, dSy = dxdz, dSz = dxdy

Differential Volume Element: The elementary volume is given by:

dV = dx dydz

2.1.1 Cylindrical Coordinate System

In the cylindrical coordinate system (r,θ, z), a point is represented as:

x = r cosθ, y= rsinθ, z = z

It should also be noted that we can write:

up = cosθ i+sinθ j

and derive this vector with respect to θ:
We obtain:

dup = dθ (−sinθ i+cosθ j) ,

knowing that:
cos

(
θ+ π

2

)
=−sinθ and sin

(
θ+ π

2

)
= cosθ.

Thus:

dup

dθ
can be obtained by rotating up by an angle of

π

2
, and we can write:

dup

dθ
=uθ.

The position vector DM is written as:

DM= ρup + zk= (xi+ yj)+ zk,

9



Figure 2: Cylindrical base

where x and y are the Cartesian coordinates of the point M in the Oxy plane, given by:

x = ρ cosθ, y= ρ sinθ, and z = z.

The expression for the elementary displacement is:

dDM= dρup +ρdθuθ+dzk.

The expression for the elementary surface is:

ds = ρdρdθ.

Example: Find the velocity vector for a particle moving in a circular path where r = 2,
θ = t2, and z = 4t. The velocity components are:

vr = dr
dt

= 0, vθ = r
dθ
dt

= 2(2t), vz = dz
dt

= 4

Thus, the velocity vector is:
v= 0er +4teθ+4ez

Differential Length Element:

d
−→
l = drer + rdθeθ+dzez

10



Figure 3: Cylindrical coordinates

Differential Surface Element:

dSr = rdθdz, dSθ = drdz, dSz = rdrdθ

Differential Volume Element:

dV = rdrdθdz

2.2 Spherical Coordinate System

In the spherical coordinate system (r,θ,φ), a point is represented as:

x = rsinθ cosφ, y= rsinθsinφ, z = r cosθ

The position vector of point M in spherical coordinates, meaning in the spherical basis, is
written as:

−−→
OM = r−→ur = xi+ yj+ zk.

From the figure, we can express x, y, z in terms of r,θ,φ:

X =OM cosϕ= rsinθ cosϕ,

Y =OM sinϕ= rsinθsinϕ,

Z =OM cosθ = r cosθ.

Thus, we deduce:

−→ur = sinθ cosϕi+sinθsinϕj+cosθk.

11



The unit vector −→uϕ at OM is written as:

−→uϕ = cosϕi+sinϕj.

This vector −→uϕ can be obtained either by replacing ϕ with ϕ+2π or by differentiating−→ur with respect to ϕ:

−→uϕ =−sinϕi+cosϕj.

This basis vector can also be expressed as the derivative of −→ur with respect to ϕ:

−→uϕ = 1
sinθ

∂−→ur

∂ϕ
.

The third basis vector in the spherical coordinate system is given by:

−→uθ = ∂−→ur

∂θ
.

2.2.1 Elementary Displacement:

d
−→
M = d(r−→ur)= dr−→ur + rd−→ur + r

∂−→ur

∂θ
dθ+ r

∂−→ur

∂ϕ
dϕ.

= dr−→ur + rdθ−→uθ+ r(sinθdϕ)−→uϕ.

2.2.2 Elementary Surface and Volume:

dS = r2 sinθdθdϕ.

dV = r2 sinθdr dθdϕ.

Example: Find the length of an infinitesimal arc in spherical coordinates for a small
change in θ while keeping r and φ constant.

dl = rdθ

Differential Length Element:

d
−→
l = drer + rdθeθ+ rsinθdφeφ

Differential Surface Element:

dSr = r2 sinθdθdφ, dSθ = rsinθdrdφ, dSφ = rdrdθ

12



Figure 4: Spherical base

Figure 5: elementary volumes in spherical coordinates

Differential Volume Element:

dV = r2 sinθdrdθdφ

13



2.2.3 Transformational relationships between different coordinates

From To Transformation Equations

Cartesian(x, y, z) Spherical(r,θ,φ)

r =
√

x2 + y2 + z2

θ = arccos
( z

r

)
φ= arctan2(y, x)

Spherical(r,θ,φ) Cartesian(x, y, z)

x = rsinθ cosφ

y= rsinθsinφ

z = r cosθ

Cartesian(x, y, z) Cylindrical(ρ,ϕ, z)
ρ =

√
x2 + y2

ϕ= arctan2(y, x)

z = z

Cylindrical(ρ,ϕ, z) Cartesian(x, y, z)

x = ρ cosϕ

y= ρ sinϕ

z = z

Spherical(r,θ,φ) Cylindrical(ρ,ϕ, z)

ρ = rsinθ

ϕ=φ

z = r cosθ

Cylindrical(ρ,ϕ, z) Spherical(r,θ,φ)

r =
√
ρ2 + z2

θ = arctan
(ρ

z

)
φ=ϕ

2.2.4 Solid Angles

A solid angle dΩ in spherical coordinates is given by:

dΩ= sinθdθdφ

The total solid angle in three-dimensional space is:

Ω=
∫ 2π

0

∫ π

0
sinθdθdφ= 4π

3. Operators in Vector Calculus

Example: Compute the gradient of the scalar function f (x, y, z)= x2 + y2 + z2:

∇ f = (2x,2y,2z)

14



Figure 6: Solid Angles

Example: Compute the divergence of the vector field A= (x2, y2, z2):

∇·A= ∂

∂x
(x2)+ ∂

∂y
(y2)+ ∂

∂z
(z2)= 2x+2y+2z

These examples reinforce the mathematical concepts necessary for physics applications.

3.1 Applications:

3.1.1 Calculate the perimeter of a circle C with radius R (simple integral).

Solution:
We have dl = R dθ, hence:

C =
∫ 2π

0
Rdθ = 2πR.

3.1.2 Calculate the area of a disk D with radius R (double surface integral).

We use the differential surface element dS = dp p dθ, hence:
Solution:

D =
Ï

S
dp dθ =

∫ R

0

∫ 2π

0
ρdρdθ.

Evaluating the integral:

D =
∫ 2π

0
dθ

∫ R

0
ρdρ = 2π× R2

2
=πR2.
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Figure 7: Perimeter of a circle

Figure 8: Area of a disk

3.1.3 Calculate the volume of a cylinder V with radius R and height H (triple
volume integral).

We use the differential volume element dV = dp p dθdz, hence:
Solution:

V =
Ñ

V
dp dθdz =

∫ R

0
ρdρ

∫ 2π

0
dθ

∫ H

0
dz.

Evaluating the integral:

V =
∫ H

0
dz

∫ 2π

0
dθ

∫ R

0
ρdρ.
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Figure 9: Volume of a cylinder

V = H×2π× R2

2
=πR2H.

3.1.4 Calculate the surface area of a hemisphere D with radius R (excluding
the horizontal disk) (double surface integral).

Figure 10: Surface area of a hemisphere

We use the differential surface element dS = R2 sinθdθdφ, hence:
Solution:

D =
Ï

S
R2 sinθdθdφ.

Evaluating the integral:

D = R2
∫ π

0
sinθdθ

∫ 2π

0
dφ.
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D = R2(−cosθ
∣∣∣π
0
)× (2π)= R2(1+1)×2π= 2πR2.

3.1.5 Calculate the volume of a sphere V with radius R (triple volume integral).

Figure 11: Volume of a sphere

We use the differential volume element dV = r2 sinθdr dθdφ, hence:
Solution:

V =
Ñ

V
r2 sinθdr dθdφ.

Evaluating the integral:

V =
∫ R

0
r2 dr

∫ π

0
sinθdθ

∫ 2π

0
dφ.

V =
(

R3

3

)
× (−cosθ

∣∣∣π
0
)×2π.

V = R3

3
× (1+1)×2π= R3

3
×2×2π= 4

3
πR3.
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Chapter II: Electrostatics

4. Elementary Electric Charges

The electrical properties of matter originate at the atomic level. Matter is composed
of atoms, each consisting of a nucleus around which a cloud of electrons orbits. These
electrons repel each other but remain positioned around the nucleus. The nucleus consists
of protons, which carry positive charges, and neutrons, which are neutral. The set of
particles forming the nucleus is called nucleons.

Electrons and protons carry the same electric charge in absolute value, denoted by e.
This electric charge, known as the elementary charge, has a value of:

e = 1.602×10−19 C (4.1)

The electric force acting between positively charged protons and negatively charged
electrons is responsible for the cohesion of atoms and molecules. The total charge of
non-ionized atoms (i.e., those that have neither lost nor gained electrons) is zero.

An electric charge cannot take arbitrary values; it is always an integer multiple of the
elementary charge:

Q =±ne (C) (4.2)

This expresses the fundamental principle of charge quantization.

5. Electrification Experiment

When a glass rod is rubbed with a piece of silk and brought close to small pieces of paper,
the paper pieces are attracted to the rod, indicating that electrons have been removed from
the rod.

5.0.1 First Experiment

A small ball made of elderberry wood or polystyrene is suspended by a thread. A glass or
amber rod, previously rubbed, is brought near the ball. Each rod first attracts and then
repels the ball after contact (Figure 2.1a). However, if both rods are brought close to the
ball simultaneously, nothing happens (Figure 2.1b).

5.0.2 Second Experiment

If two balls are electrified by contact with a rubbed glass rod, they repel each other.
However, if each ball has touched different rubbed rods made of different materials, they
attract each other.

These experiments demonstrate the existence of two states of electrification, corre-
sponding to two types of electric charges: positive and negative. We recall the fundamental
rule:
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Figure 12: Electrification experiment

Figure 13: Electrification experience

Two bodies with the same type of charge repel each other, while bodies with
opposite charges attract each other.

6. Coulomb’s Law

Consider two point charges q1 and q2 placed in a vacuum. The first exerts a force propor-
tional to q1 on the second, and vice versa. The force between the two charges, known as
electrostatic force, is proportional to the product of their charges:

Fe = K
q1q2

r2 U12 (6.3)

where r is the distance between the two charges, and K is given by:
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K = 1
4πϵ0

, with ϵ0 = 8.854×10−12 F/m (6.4)

Application: Calculate the force exerted by charge q1 = 3×10−3 C on charge q2 =
−5×10−4 C separated by a distance of 20 mm.

Solution:

F = K
q1q2

r2 = 9×109 × (3×10−3)(−5×10−4)
(20×10−3)2 (6.5)

F = 33.75×106 N (6.6)

7. Superposition Principle

Consider a charge q at point M in the presence of other charges qi located at points Mi.
The force F acting on charge q is:

F=∑
i

K
qqi

r2
i

UiM (7.7)

Application: Compute the resultant force acting on q3 due to q1 and q2.

8. Electrostatic Field

An electric field exists at a point in space if a test charge q0 at that point experiences an
electrostatic force Fe such that:

E= Fe
q0

(8.8)

8.1 Electric Field of a Point Charge

A charge Q at point O creates an electric field at any point M given by:

E(M)= KQ
r2 UOM (8.9)

9. Electrostatic Potential

9.1 Electric Potential

The work required to move a charge q0 from point A to point B in an electric field is:

WAB = q0

∫ B

A
E ·dl (9.10)

The electric potential difference is defined as:
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UAB =VB −VA =−
∫ B

A
E ·dl (9.11)

9.2 Potential of a Point Charge

For a charge Q at point O, the electric potential at a distance r is:

V = K
Q
r

(9.12)

assuming V = 0 at infinity.

10. Electrostatic Potential of continuous charge distribution

The potential at a distance r from a charge q is given by:

V (r)= K q
r

(10.13)

The potential remains constant on spheres of radius r centered around the charge q,
which are called equipotential surfaces.

10.1 Potential Created by Multiple Distinct Point Charges

We start from the relationship between the electric field E and the potential V , more
precisely from the differential relation:

dV =E(M) ·−→dl

For a set of charges qi, concentrated at point M, and using the superposition theorem:

dV =−E(M) ·−→dl =−
N∑

i=1
[Ei(M)] ·−→dl =

N∑
i=1

[−Ei(M)] ·−→dl =
N∑

i=1
dVi

The sum of a set of differentials being the differential of the sum:

dV =
N∑

i=1
dVi = d

(
N∑

i=1
Vi

)

V (M)=
N∑

i=1
Vi = 1

4πϵ0

N∑
i=1

qi

r i
(10.14)

Where r i is the distance between qi and point M. The charge qi can be positive or
negative, which is why it must be taken with its sign.
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Proof. Using the relationship between the electric field E and potential V , we obtain:

V (M)=∑
i

K qi

r i
(10.15)

where r i is the distance between charge qi and point M. The charges qi can be positive
or negative.

10.2 Potential Due to a Continuous Charge Distribution

For a continuous charge distribution, integration is used:

V (M)= K
∫

dq
r

(10.16)

10.2.1 Volume Distribution

V (M)= K
Ñ

ρdV
r

(10.17)

where ρ is the volume charge density.

10.2.2 Surface Distribution

V (M)= K
Ï

σdS
r

(10.18)

where σ is the surface charge density.

10.2.3 Linear Distribution

V (M)= K
∫
λdl

r
(10.19)

where λ is the linear charge density.
Here is the combined and corrected translation of the text from the images into English,

rewritten in LaTeX:
—
**c) If the distribution is linear:**

V (M)=
∫

C

λdl
4πϵ0r

(I I −26)

where λ is the linear charge density.
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10.3 Applications:

10.3.1 Field and Potential Created by a Ring:

A ring with center O and radius R carries a charge q uniformly distributed with a linear
charge density λ> 0.

1. Calculate the potential created at point M on the axis Oy located at a distance y
from O. 2. Deduce the electric field vector at point M.

10.3.2 Solution:

For the given point M, the quantities r, y, and R are constant. Starting from Figure I.8
and setting K = 1

4πϵ0
, we can write:

dV = K
dq
r

Integrating over the entire charge distribution:∫
dV = K

r

∫
dq =⇒ V = K q

r
+C∞

From the figure, we can see that:

r =
√

R2 + y2

After substituting K and q =λ ·2πR, we arrive at the expression:

V = λ

2ϵ0
· R√

R2 + y2
+C∞

Now, to determine the magnitude of the electric field E, we differentiate the expression
for V with respect to y, using the relation:

E⃗ =−dV
d y

=⇒ E⃗ = λR
2ϵ0

· y
(R2 + y2)3/2 u⃗

10.3.3 Field and Potential Created by a Disk:

Consider a disk with center O and radius R, uniformly charged on its surface. The surface
charge density is σ (σ> 0) Figure 14.

1. Calculate the electric field and the potential created by this distribution at a point
M on the axis (Oz).

To do this, we decompose the disk into rings of radius ρ and width dρ. Let P be a point
on the ring and P ′ the symmetric point of P with respect to O.

First, let’s examine the symmetry of the problem: the distribution has a revolution
symmetry around the axis OZ. Any plane containing the axis OZ is a plane of even
symmetry for the distribution. Therefore, the electric field E⃗ at a point M on the axis OZ
is directed along k⃗:
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Figure 14: Potential Created by a Disk

E⃗(M)= E(0,0, Z)= E(Z )⃗k

A charge element dq =σds, centered at P (Figure II-9), creates at a point M on the
axis of the disk an elementary field dE⃗ given by:

dE⃗ = 1
4πϵ0

dq
r2 u⃗

where ds = ρdρdθ and r =
√
ρ2 +Z2.

The charged disk has a revolution symmetry around its axis, for example, the axis ZZ,
so the field is directed along this axis. We have:

d⃗E = σ

4πϵ0

ρdρdθ
ρ2 +Z2 u⃗

d⃗EZ = d⃗E cosα= σ

4πϵ0

ρdρdθ cosα
ρ2 +Z2 k⃗

The total electric field at point M is obtained by integrating over the entire disk:

E(M)= σ

4πϵ0

∫ R

0

∫ 2π

0

ρdρdθ
ρ2 +Z2 cosα

Since cosα= Z
r , we have:

E(M)= σ

4πϵ0

∫ R

0

∫ 2π

0

ρdρdθ
ρ2 +Z2

Z√
ρ2 +Z2

E(M)= σ

2ϵ0

(
Z
|Z| −

Zp
R2 +Z2

)
k⃗

When Z is large, the field weakens. However, when R ≫ Z, and M is very close to the
disk, the field becomes:

E(M)=± σ

2ϵ0
k⃗
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The potential at point M is derived from the field by integration:

E⃗(M)=−∇V (M)=−dV
dZ

k⃗

Thus,

V = σ

2ϵ0

(
Z−

√
R2 +Z2

)
11. Electrostatic Energy

11.1 Energy of a Point Charge in an Electric Field

The work done to move a charge q from A to B in an electric field E is:

WAB = q(VA −VB) (11.20)

11.2 Energy of a System of Point Charges

The total electrostatic energy W of a system of point charges is given by:

W = 1
2

∑
i

qiVi (11.21)

11.3 Energy of a Continuous Charge Distribution

W = 1
2

Ñ
ρV dV (11.22)

12. Electric Dipole

12.1 Definition

An electric dipole consists of two equal and opposite charges separated by a small distance.
The dipole moment p is given by:

p= qa (12.23)

12.2 Potential Created by a Dipole

The potential at a point P due to a dipole is:

V = K pcosθ
r2 (12.24)
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Figure 15: Electric Field of a Dipole

12.3 Electric Field of a Dipole

The radial and angular components of the electric field are:

Er = K p(2cosθ)
r3 (12.25)

Eθ = K psinθ
r3 (12.26)

13. Gauss’s Theorem

13.0.1 Objectives:

To be able to quickly provide the expression for the electrostatic field created by a source
with a high degree of symmetry.

13.1 Prerequisites:

By drawing two networks of lines on any surface, the surface is decomposed into smaller
areas bounded by these lines (see the figure).

If the lines are very numerous and evenly distributed, each of these areas has a very
small surface. Consider a point P on the surface S. If the number of lines increases
indefinitely, the small area around the point P decreases and tends to approach the portion
of the tangent plane at P to the surface S. In the limit, its area dS becomes infinitely small
and coincides with a portion of the plane. It is called the surface element surrounding the
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Figure 16: Gauss’s Theorem

point P. Thus, any surface S can be considered as the juxtaposition of an infinite number
of surface elements dS.

13.2 Surface Element:

Consider a surface element of area dS.
We associate with this element a vector called the "normal" vector d⃗S, defined as

follows:
- Its origin is a point P on the element. - Its direction is normal to the surface. - Its

magnitude is equal to the area dS.
The vector d⃗S is therefore infinitely small. Its orientation is chosen arbitrarily (outward

for closed surfaces). To orient d⃗S, one can also use the "corkscrew" rule. The contour C
bounding the surface is oriented by arbitrarily choosing a positive direction of traversal.
The vector d⃗S is oriented according to the progression of a corkscrew turning in the
direction of C.

13.3 Gauss’s Theorem:

Gauss’s theorem relies on the concept of the flux of a vector. This new concept is introduced
in what follows. However, a good mastery of elementary vector operations, particularly the
dot product, is necessary.

14. Concept of Flux

Let E⃗ denote the electric field vector at point P. Let dS⃗ be the surface element surrounding
this point and the corresponding vector.
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Figure 17: Concept of Flux

14.1 Definition:

By definition, the flux dΦ of the electric field E⃗ through the considered surface element
dS⃗ is equal to the dot product:

dΦ= E⃗ ·dS⃗

This is called the elementary flux to indicate that it is relative to a surface element.

14.2 Sign of the Flux:

The sign of the flux depends on the direction of the vector dS⃗. Consider, for example, the
two opposite vectors dS⃗ and −dS⃗, associated with a surface element.

If the vector dS⃗ makes an angle θ with the electric field E⃗, the vector −dS⃗ makes
an angle π−θ, and since cos(π−θ) =−cos(θ), the dot products E⃗ ·dS⃗ and E⃗ · (−dS⃗) have
opposite values.

To calculate the algebraic flux of the electric field E⃗ through a surface element dS⃗, it is
therefore necessary to choose, in accordance with the concept of positive flux, the direction
of the vector dS⃗ associated with this element.

The flux of an electric field E through a closed surface S is given by:

Φ=
∮

E ·dS= Qenc

ϵ0
(14.27)

where Qenc is the total charge enclosed by the surface.

14.3 Flux Calculation

Consider the surface elements composing the surface S. For each of them, the elementary
flux dΦ is calculated. The total flux Φ of the electric field through the surface S is obtained
by summing the elementary fluxes. This sum is conventionally denoted by the notation:

Φ=
Ï

S
E⃗ ·dS⃗
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To perform this calculation, the vectors dS⃗ associated with the surface elements are
all oriented on the same side of the surface S.

14.4 Flux of a Point Charge

Let P be a point belonging to the surface element dS⃗. The field E⃗ created at P by the
charge q is directed along r⃗ and oriented from q to P if q > 0; its magnitude is:

E = 1
4πϵ0

q
r2

where r is the distance between q and P.
The elementary flux of this electric field through the surface element dS⃗ surrounding

the point P is:

dΦ= E⃗ ·dS⃗ = E dS cosθ

where θ is the angle between E⃗ and dS⃗.
However, dΩ= dS cosθ

r2 is the solid angle dΩ subtended by the contour of dS⃗ as seen
from q (geometrically, it is a cone with vertex at q that is tangent to the surface element
dS⃗).

Gauss’s Theorem

Gauss’s theorem is stated as follows:

14.5 Theorem:

The flux of the electric field through any closed surface S is equal to 1
ϵ0

times the total
algebraic charge contained within the volume bounded by this surface:

Φ=
∮

S
E⃗ ·dS⃗ = Qint

ϵ0

14.5.1 Case of Charges Outside a Closed Surface S:

The elements dS⃗1 and dS⃗2 are seen under the same solid angle dΩ in absolute value.
However, E⃗1 and dS⃗1 are collinear, while E⃗2 and dS⃗2 are opposite. Therefore, the fluxes
dΦ1 and dΦ2 have opposite signs. The elementary fluxes cancel out in pairs, and the total
flux of the field E⃗ created by the charge q outside the closed surface is zero.

14.5.2 Case of Charges Inside a Closed Surface S:

The sum of the elementary fluxes will not be zero because all the surface element vectors
are, for example, all oriented outward from the surface. The total flux sent by q through S
will be the sum of the elementary fluxes:
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Figure 18: Case of Charges Inside a Closed Surface

Φ=
∮

S
E⃗ ·dS⃗ = q

ϵ0

The unit of solid angle is the angle that subtends a unit area on a sphere of unit radius.
Since the surface area of a unit sphere is 4π, the solid angle that subtends the entire space
from a point is 4π. The sum extends over the entire space, i.e., 4π.

If there are N charges qi inside S:

Φ=
∮

S
E⃗ ·dS⃗ = 1

ϵ0

N∑
i=1

qi

By defining:

Qint =
N∑

i=1
qi

The flux of E⃗ through a closed surface is equal to 1
ϵ0

times the sum of the interior
charges, regardless of the exterior charges.

14.6 Application of Gauss’s Theorem:

The application of Gauss’s theorem is very useful in problems that exhibit a high degree of
symmetry. Verify this property with the simple example of the field E⃗ created by a point
charge q.

The following two simulations will allow you to apply Gauss’s theorem in the case of two
uniformly charged structures with axes of symmetry. You can demonstrate the simplicity
with which Gauss’s theorem allows the calculation of the electrostatic field created by these
two charge distributions, which exhibit a high degree of symmetry.

14.7 Methodology

Gauss’s theorem is a valuable tool for determining the electric field E⃗ at any point P when
the source charges exhibit high symmetry. The steps for calculating E⃗ are as follows:

1. Determine the orientation of the field using symmetry considerations.
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2. Choose a "Gaussian surface" S (imaginary, with no physical reality): - Passing
through the point of interest P. - Most suitable for simplifying the expression of the flux of
E⃗ through it. - Possessing the same symmetry properties as the source. - Not coinciding
with a charged material surface.

3. Express the flux Φ through the closed surface S.
4. Determine the total charge Qint enclosed within the volume bounded by S.
5. Apply Gauss’s theorem:

Φ=
∮

S
E⃗ ·dS⃗ = Qint

ϵ0

If the Gaussian surface is well chosen, the left-hand side of the equation is a simple
function of E⃗ and the distance r. Thus, the expression for the field E⃗ can be obtained as a
function of the distance r and the source charges.

14.7.1 Case of axial symmetry

A source charge distribution has axial symmetry if the charge density at a point is a
function only of the distance from an axis.
Cylindrical Charge Cloud with Volume Density ρ = f (r):

Figure 19: Case of axial symmetry

1. By symmetry, the electric field is radial (far from the edges of the source).
2. The most suitable Gaussian surface is a cylinder aligned with ∆ and passing through

the point of interest M (which can be inside or outside the source).
Point of Interest Outside the Source:
On the right sections S of the Gaussian cylinder Sg, the vectors E⃗ and dS⃗ are orthogo-

nal, so the flux of E⃗ through S is zero. The flux of E⃗ through the closed Gaussian surface
is reduced to the flux through the lateral surface.

Φ=
Ï

Sg

E⃗ ·dS⃗ =
Ï

Slat

E⃗ ·dS⃗+
Ï

S
E⃗ ·dS⃗ =

Ï
Slat

E⃗ ·dS⃗

On the lateral surface, E⃗ and dS⃗ are collinear, so the flux reduces to:
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Φ=
Ï

Slat

E⃗ ·dS⃗ =
Ï

Slat

E ·dS

E is the same at every point on Sg and can therefore be taken out of the integral:

Φ=
Ï

Slat

E ·dS = E
Ï

Slat

dS = ESlat

The lateral surface area of the Gaussian surface is equal to 2πrh:

Φ= E ·2πrh

Now, we only need to evaluate the charge Q i inside the volume delimited by Sg
according to the considered distribution. Gauss’s theorem allows us to determine the field
E by writing:

Φ= E ·2πrh = Q i

ϵ0
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15. Capacitance

The capacitance C of a conductor is defined as the ratio of the charge Q stored on the
conductor to the electric potential V of the conductor:

C = Q
V

The unit of capacitance is the farad (F), where 1F = 1C/V (one farad equals one coulomb
per volt).

Figure 20: The Capacitance

C = Q
V

(15.28)

For a few common conductor geometries, the capacitance is given by:

1. Isolated Spherical Conductor of Radius R:

C = 4πε0R

where ε0 is the permittivity of free space.

2. Parallel Plate Capacitor with Plate Area A and Plate Separation d:

C = εA
d

where ε= ε0εr is the permittivity of the dielectric medium.

3. Cylindrical Capacitor with Inner Radius R1, Outer Radius R2, and Length L:

C = 2πεL
ln(R2/R1)
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The capacitance C of a conductor is defined as:
For a spherical conductor:

Figure 21: Spherical conductor

C = 4πϵ0R (15.29)

For a cylindrical capacitor:

Figure 22: Cylindrical capacitor

C = 2πϵ0h
ln(R2/R1)

(15.30)

For a parallel plate capacitor:

C = ϵ0S
d

(15.31)

15.1 Energy Stored in a Capacitor

The energy stored in a capacitor is given by:

W = 1
2

CV 2 (15.32)
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16. Chapter 3 "Electrokinetics"

Electrokinetics is the study of electric currents, that is, the study of the movement of
electric charges in material mediums called conductors. In other words, it is the study of
electric circuits and networks.

17. Electric Conductor

In electricity, a conductor is a material that contains electric charge carriers that can
move easily. When this conductor is subjected to an electric field, the movement of charge
carriers becomes globally ordered, which results in the observation of an electric current.

By extension, a conductor is an electrical or electronic component with low resistance,
used to carry current from one point to another.

Among the conductive materials, we can mention metals, electrolytes (or ionic solu-
tions), and plasmas.

Perfect conductors do not exist, so ohmic conductors are used, among which the best
are silver, gold, and aluminum.

18. Electric Current

18.1 Definition

Electric current is a collective and organized displacement of charge carriers (electrons or
ions). This flow of charges can occur in a vacuum (electron beams in cathode ray tubes...),
or in a conductive material (electrons in metals, or ions in electrolytes). An electric current
appears in a conductor when a potential difference is established between its terminals.

18.2 Intensity of Electric Current

The intensity of the electric current is a number describing the rate of flow of electric
charge across a given surface, notably the cross-section of an electrical wire.

I(t)= dq(t)
dt

(III-1)

Where:

• I is the intensity of the current.

• q is the electric charge.

• t is the time.

In the International System of Units, the intensity of the current is measured in
amperes, a base unit whose normalized symbol is A. An ampere corresponds to a charge
flow of one coulomb per second.
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The intensity is measured using an ammeter which must be connected in series in the
circuit.

18.3 Current Density

Current density is a vector describing the electric current at a local scale. Its direction
indicates that of the displacement of charge carriers (but its sense can be opposite for
negative charge carriers) and its norm corresponds to the intensity of the current per unit
area. It is related to the electric current by:

I =
Ï

S
j⃗ ·dS⃗ (III-2)

Where:

• I is the intensity of the current.

• S is a surface.

• j⃗ is the current density.

• dS⃗ is the elementary surface vector.

In the International System of Units, the current density is measured in amperes per
square meter (A·m−2).

19. Ohm’s Law

The potential difference or voltage U (in volts) across the terminals of a resistor R (in
ohms) is proportional to the intensity of the electric current I (in amperes) that flows
through it (Figure III-1).

U = R · I (III-3)

The resistance is the opposition exerted by a body to the passage of an electric current.
The resistance is measured in ohms.

20. Joule Effect

The Joule effect is a heat production effect that occurs when an electric current passes
through a conductor exhibiting resistance. It manifests as an increase in the thermal
energy of the conductor and its temperature. In effect, this type of conductor transforms
electrical energy into heat energy (energy dissipated as heat). The power dissipated by
this conductor is equal to:

P = RI2 (III-4)
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R

I

U

Figure 23: Resistor traversed by a current I under a voltage U

The unit of power is the watt (W).
R: the resistance of the conductor.
I: the intensity of the current that flows through the conductor.
From the definition of energy, we deduce that the energy consumed by a resistance

during time t is equal to:

E =U .I.t = R.I2t = U2

R
t (III-5)

The unit of energy is the joule (J).

21. Grouping of Resistors

We distinguish two cases for the grouping of resistors:

21.1 Series Grouping

All resistors Ri are traversed by the same electric current I, and each of them has only one
common end with another resistor (Figure III-2). The voltage UAB =U is equal to the sum
of the voltages across the resistors.

Figure 24: Series Grouping of Resistors
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U =U1 +U2 +U3 +·· ·+Un = R.I (III-6)

U = R1.I +R2.I +R3.I +·· ·+Rn.I = R.I (III-7)

Thus, we obtain the equivalent resistance of all the resistors grouped in series.

R =
n∑

i=1
Ri (III-8)

21.2 Parallel Grouping

This grouping is characterized by the fact that all the resistors have their terminals con-
nected two by two (Figure III-3). The voltage is the same across the terminals of any
resistor Ri .

The electric current that supplies the portion of the circuit is divided between the
resistors, such that:

I = I1 + I2 + I3 +·· ·+ In (III-9)

U
R

= U
R1

+ U
R2

+ U
R3

+·· ·+ U
Rn

−→ 1
R

=
[

1
R1

+ 1
R2

+ 1
R3

+·· ·+ 1
Rn

]
·U (III-10)

Thus, we obtain the equivalent resistance, in this case, which is always smaller than
that of the smallest of the resistors connected in parallel.

1
R

= 1
R1

+ 1
R2

+ 1
R3

+·· ·+ 1
Rn

−→ 1
R

=
n∑

i=1

1
Ri

(III-11)

22. Electric Circuits

An electric circuit is a set of conductors (wires) and electrical (sockets, switches, ...) or
electronic components (household appliances, ...) through which an electric current flows.

The electrokinetic study of an electric circuit consists of determining, at each point, the
intensity of the current and the voltage.

23. Elements of an Electric Circuit

The electric circuit is composed essentially of the following elements (Figure III-4):

1. The node: is a point where two or more conductors meet.

2. The branch: is a portion of the circuit that is located between two nodes.

3. The mesh: is any closed loop, formed by a sequence of branches.
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Figure 25: A general electric circuit

24. Generators

To obtain a continuous electric current in a closed circuit, it is essential to supply the
circuit with energy. This is done by devices called generators. We can say that they are
sources of electromotive forces to transport the charges.

Two types of generators are distinguished:

24.1 Generators or voltage sources

The voltage source, or voltage generator, is a dipole characterized by a constant voltage
between its terminals, whatever the variable intensity it delivers. In what follows, we
will be particularly interested in continuous voltage generators. This type of generator is
characterized by an electromotive force e, and a low internal resistance r (Figure III-5).

It is possible to replace a voltage generator, whose characteristics are (e, r), with an
ideal source, of electromotive force e, connected in series with an ohmic conductor, of
resistance r as indicated in Figure III-5.

The electromotive force of a voltage generator is equal to the potential difference
between its terminals when it does not deliver any current:

I = 0−→ e =UAB

Figure 26: Representation of the voltage generator and current sources
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24.2 Generators or current sources

The current source, or current generator, is a dipole characterized by the delivery of a
constant current, whatever the variable potential difference between its terminals. In
what follows, we will be essentially interested in continuous current generators. This type
of generator is represented by the scheme of Figure III-6.

We can replace a current generator with an ideal current source, which delivers a
constant current, and connected in parallel with an ohmic conductor, of resistance, as
indicated in Figure III-6.

25. Kirchhoff’s Laws

25.1 First Law (Node Law)

At a node in a circuit, the sum of the currents entering is equal to the sum of the currents
leaving: ∑

Ie =
∑

Is (III-12)

This means that the charges do not accumulate, they flow at a node in the circuit, they
obey the law of conservation of energy.

25.2 Second Law (Mesh Law)

In a mesh of an electric circuit, the algebraic sum of the products of resistance by the
intensity of the current (

∑n
k=1 RkIk) is equal to the algebraic sum of the electromotive

forces (
∑n

k=1 ek).

n∑
k=1

ek =
n∑

k=1
RkIk (III-13)

When applying this law, one must choose a positive sense around the mesh: all electro-
motive forces and currents that have the same sense will be counted positively, those that
are of opposite sense will be counted negatively. We consider the sense of e positive when
we enter, after the positive pole, by the negative pole and leave by the positive pole (which
results in an increase of potential), and the opposite in the contrary case.

26. Applications

Consider, for example, the following circuit (Figure III-7):
We are looking for the values of the three currents I1, I2, and I3, using Kirchhoff ’s

laws. The conservation of current (first law of Kirchhoff) implies that I1 = I2 + I3.
We then apply the potential conservation on the mesh of the circuit (second law of

Kirchhoff) to the meshes ABEFA and BCDEB.
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Figure 27: Electric circuit

Figure 28: Mesh ABEFA

For the Mesh ABEFA:
Starting from point A where the potential VA exists:

1. From A to B, a resistance of 2.5Ω is traversed in the direction of the current i1, which
corresponds to a potential drop of 2.5 i1 Volts.

2. From B to E,

(a) We traverse a battery of E = 3 Volts from the highest potential to the lowest
potential, which results in a potential drop of 3 Volts.

(b) The internal resistance of the battery is traversed in the direction of the current
i3, which corresponds to a potential drop of 0.5 i3 Volts.

(c) Finally, the resistance of 1.5Ω is also traversed in the direction of the current
i3, which leads to a potential drop of 1.5 i3 Volts.

3. From E to F, there is no potential variation.

4. From F to A,
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(a) The battery of E = 10 Volts is traversed from the lowest potential to the highest
potential, raising the latter by 10 Volts.

(b) On the other hand, the traversal of the internal resistance of this battery in the
direction of the current i1 causes a potential drop of 0.5 i1 Volts.

In total, we have done after one complete turn:

VA −2.5i1 −3−0.5i3 −1.5i3 +10−0.5i1 =VA

and therefore

UAA =VA −VA =−2.5i1 −3−0.5i3 −1.5i3 +10−0.5i1 = 0

For the mesh BCDEB:

Figure 29: mesh BCDEB

Starting from point B where the potential VB exists:

1. From B to D,

(a) There is a loss of 1 Volt across the battery.

(b) And a loss of 0.5i2 Volt across the internal resistance of this battery.

2. From D to E, there is a loss of 1.5i2 Volt.

3. From E to B,

(a) There is a gain of 1.5i3 Volt.

(b) A gain of 0.5i3 Volt across the internal resistance of the 3 Volt battery.

(c) And a gain of 3 Volts due to the electromotive force of the battery.
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In total, we have done after one complete turn:

VB −1−0.5i2 −1.5i2 +1.5i3 +0.5i3 +3=VB

and therefore

UBB =VB −VB =−1−0.5i2 −1.5i2 +1.5i3 +0.5i3 +3= 0

We obtain the following system of equations:

i1 = i2 + i3

−2.5i1 −3−0.5i3 −1.5i3 +10−0.5i1 = 0

−1−0.5i2 −1.5i2 +1.5i3 +0.5i3 +3= 0

Or even:

i1 = i2 + i3

−3i1 −2i3 +7= 0

−2i2 +2i3 +2= 0

This is a system of 3 equations with 3 unknowns: i1, i2, and i3.
The resolution of this system gives:

i1 = 2A

i2 = 1.5A

i3 = 0.5A

The positive values of these currents indicate that the senses chosen at the beginning
are correct.
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27. Electromagnetism

Electromagnetism is a branch of physics that studies the interactions between electric
currents and magnetic fields.

27.1 Introduction

In nature, there exist objects called permanent magnets that exert forces on each other as
well as on iron, nickel, cobalt, and various alloys.

A magnet is a source that modifies the properties of the space around it, where this
modification is attributed to the presence of a field called the magnetic field (Figure 1).

Figure 30: Magnet

27.2 Magnetic Field Created by a Magnet

A magnetic field B⃗ is a force field resulting from the movement of charges (an electric
current). It represents a region of space subject to forces originating from either a magnet
or an electric current.

The unit of magnetic field strength in the International System of Units (SI) is the
Tesla (T), though it can also be measured in Gauss (G), where:

1G= 10−4 T

• B⃗: Magnetic field vector (T)

• Typical values:

– Earth’s magnetic field: ≈ 0.5G (5×10−5 T)

– Refrigerator magnet: ≈ 100G (0.01T)

– MRI scanner: ≈ 1.5−3T

27.2.1 Earth’s Magnetic Field

The Earth’s magnetic field is generated by convective motions in the liquid metallic outer
core (composed primarily of iron and nickel). This geodynamo effect creates a dipole field
that:
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• Aligns compass needles to magnetic north (deviation from geographic north is called
magnetic declination)

• Provides crucial protection against solar wind (Van Allen radiation belts)

B⃗earth ≈ 0.25−0.65G (25−65µT)

Key characteristics:

• Inclination: Angle between field lines and surface (varies with latitude)

• Secular variation: Drifts ∼0.1° annually

• Polarity reversals occur geologically (∼300 kyr intervals)

Biospheric Significance of Earth’s Magnetic Field The Earth’s magnetic field plays
a crucial role in enabling life by:

• Deflecting 99% of solar wind particles (typically 1−10 keV protons/electrons)

• Creating the magnetopause boundary at ∼ 10RE (Earth radii)

• Channeling charged particles toward polar regions, producing:

– Aurorae borealis/australis (visible at 90−400 km altitudes)

– Ionospheric currents (∼ 1 MA in auroral electrojets)

FLorentz = q(⃗v× B⃗) (Deflection mechanism)

Figure 31: Aurora
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27.2.2 Magnetic Poles

Experimental observations show that when a small magnetized needle is placed freely at
point M:

• Aligns along Earth’s magnetic meridian (declination angle δ)

• Exhibits harmonic oscillations when disturbed:

τ=−kθ (Restoring torque)

• Returns to equilibrium orientation with damping time td ∝ η/B (η: viscosity)

Theorem Magneto-static Equilibrium For a freely suspended magnet with dipole
moment m⃗:

τ⃗= m⃗× B⃗earth = 0 =⇒ m⃗ ∥ B⃗earth

Figure 32: Alignment of magnetic dipoles with Earth’s field showing: (a) True North, (b)
Magnetic North, and (c) Declination

Magnetic Pole Nomenclature The needle’s orientation defines two fundamental poles:

• North Magnetic Pole (N): Points toward Earth’s geographic north

– Actually corresponds to Earth’s south magnetic pole (attraction between unlike
poles)

– Current position: 86.5°N, 164°E (2025 data)
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• South Magnetic Pole (S): Points toward Earth’s geographic south

– Magnetic dipole moment: m⃗ directed from S to N

– Field lines: B⃗ enters at S, exits at N

F⃗ =∇(m⃗ · B⃗) (Force on magnetic dipole)

27.3 Magnetic Field Characterization

At point M, the magnetic field vector B⃗ exhibits (Figure 3):

• Direction: Aligned with the magnetized needle’s axis x′x

• Orientation: From south (s) to north (n) pole of the needle

• Magnitude: Quantified in tesla (T) via teslameter

B = ∥B⃗∥ = µ0

4π

(
3(m⃗ · r̂)r̂− m⃗

r3

)
(Dipole field)

27.3.1 Magnetic Field Lines

Experimental Demonstration:

1. Place a bar magnet beneath paper

2. Sprinkle iron filings (ferromagnetic Fe3O4 particles)

3. Observe self-assembly into flux patterns

• High density at poles (∇· B⃗ = 0)

• Tangent condition: B⃗ ∥ d⃗l

Key Properties:

• Lines never intersect (uniqueness theorem)

• Density ∝ field strength (ΦB = ∫
B⃗ ·dA⃗)

• Form closed loops (solenoidal condition)
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Figure 33: Visualization of magnetic flux lines showing:

27.4 Properties of Magnetic Field Lines

Tangency Condition: The magnetic field vector B⃗ is tangent to the field lines at every
point:

B⃗ ∥ dℓ⃗ where dℓ⃗ is the line element

Pole Behavior: Field lines exhibit specific geometry near poles:

• Emerge perpendicularly from the North magnetic pole surface

• Curve through space forming continuous loops

• Re-enter perpendicularly at the South magnetic pole surface∮
S

B⃗ ·dA⃗ = 0 (Gauss’s Law for Magnetism)

Needle Alignment: The field direction matches a compass needle’s orientation:

• Direction: Along the South-North axis of the magnetized needle

• Sense: From South to North pole of the test needle

τ⃗= m⃗× B⃗ = 0 (Equilibrium condition)

• Orthogonal emergence/entry at poles

• Curvature following right-hand rule

28. Magnetic Field Created by Electric Currents

28.1 Magnetic Field Around a Straight Conductor

Experimental Demonstration:
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Figure 34: Characteristic dipole field line pattern showing

Figure 35: Interaction between the poles of a magnet

• Setup: Iron filings on plexiglass plate perpendicular to current-carrying wire

• Control case: Zero current ⇒ random filing distribution

• Active case: Current I ̸= 0⇒ concentric circular patterns emerge

• Right-hand rule orientation (thumb ∥ I, fingers ∥ B⃗)

• Field strength ∝ 1/r (cylindrical symmetry)

28.2 Quantitative Description

The magnetic field B⃗ at distance r from an infinite straight conductor:

B⃗ = µ0I
2πr

φ̂ (Biot-Savart Law) (28.33)
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Figure 36: Circular magnetic field lines around current-carrying conductor showing

µ0 = 4π×10−7 N/A2 Permeability of free space
I Current magnitude
φ̂ Azimuthal unit vector

Key Observations:

• Field forms closed loops (solenoidal property ∇· B⃗ = 0)

• No monopole sources (divergence-free)

• Circular symmetry confirms Ampère’s law:
∮

B⃗ ·dℓ⃗=µ0Ienc

28.3 Properties of the Magnetic Field Near a Straight Wire

Using compasses to analyze the magnetic field B⃗ at point M near a current-carrying
conductor (Figure 8), we establish:

• Planar Containment: The field lies in planes perpendicular to the wire

B⃗ · d⃗ℓ= 0 (Orthogonality condition)

• Current-Dependent Orientation: Field direction follows the right-hand rule:

– Thumb points with conventional current (+I)

– Fingers curl in B⃗ direction

• Field Strength Proportionality:

B = µ0I
2πr

(Exact form of k)

where k = µ0
2πr depends on:

– Distance r from wire (inverse proportionality)

– Medium’s permeability µ=µ0µr
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Key Implications:

• Demonstrates axial symmetry of magnetic fields

• Verifies Ampère’s circuital law in differential form: ∇× B⃗ =µ0 J⃗

• Basis for current measurement devices (e.g., Hall probes)

28.4 Right-Hand Rule Determination

The direction of the magnetic field can be determined using the right-hand rule:
Mathematically, this corresponds to the cross product in the Biot-Savart Law:

dB⃗ = µ0

4π
Idℓ⃗× r̂

r2

Configuration Field Orientation
Current upward Counterclockwise B⃗
Current downward Clockwise B⃗

Advanced Applications:

• Solenoid winding direction determination

• Torque direction in electric motors (Lorentz force F⃗ = IL⃗× B⃗)

• Hall effect sensor polarity

29. Lorentz Magnetic Force

29.1 Definition

A charge q moving with velocity v⃗ in a magnetic field B⃗ experiences the Lorentz force:

F⃗m = q⃗v× B⃗

29.2 Characteristics of the Lorentz Force

• Direction: Perpendicular to both v⃗ and B⃗

F⃗m ⊥ span(⃗v, B⃗)

• Orientation: Determined by the right-hand rule (Figure 9):

1. Thumb: Direction of q⃗v (positive q) or −v⃗ (negative q)

2. Index finger: Direction of B⃗

3. Middle finger: Direction of F⃗m
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• Magnitude:
Fm = |q|vBsinθ

q Charge (C)
v Velocity (m/s)
B Magnetic field strength (T)
θ Angle between v⃗ and B⃗

29.3 Special Cases

• Parallel motion (θ = 0◦): Fm = 0

• Perpendicular motion (θ = 90◦): Fm = qvB

• Helical motion: When v⃗ has both parallel and perpendicular components

29.4 Applications

• Particle accelerators (cyclotron motion)

• Mass spectrometry

• Hall effect sensors

29.5 Special Cases of Lorentz Force

[Extrema Conditions] The magnetic Lorentz force exhibits critical behaviors when:

• Maximum Force (Fmax
m ): Occurs when v⃗ ⊥ B⃗

Fmax
m = qvB (θ = 90◦)

• Null Force: Arises in two scenarios:

1. Parallel velocity and field (⃗v ∥ B⃗):

Fm = 0 (θ = 0◦ or 180◦)

2. Stationary charge (⃗v = 0⃗):

Fm = 0 (Electrostatic case)
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30. Application: Electron Motion in Earth’s Magnetic Field

30.1 Problem Statement

An electron moves through Earth’s magnetosphere perpendicular to magnetic field lines
with:

• Velocity v = 1000km/s= 106 m/s

• Magnetic field B = 10−6 T

• Electron charge e =−1.6×10−19 C

• Electron mass me = 9.11×10−31 kg

30.2 Solution

1. Lorentz Force Calculation For perpendicular motion (θ = 90◦):

F = |q|vBsinθ = evB (since sin90◦ = 1)

F = (1.6×10−19 C)(106 m/s)(10−6 T)= 1.6×10−19 N

The force direction is given by the left-hand rule for electrons (negative charge):

• Thumb: Opposite to v⃗ (since q < 0)

• Index: B⃗ direction

• Middle: F⃗ direction

2. Electron Acceleration Using Newton’s Second Law:

a = F
me

= 1.6×10−19 N
9.11×10−31 kg

= 1.76×1011 m/s2

30.3 Discussion

• The enormous acceleration (∼ 1011 m/s2) explains rapid particle spiraling in magne-
tospheres

• Results in synchrotron radiation at relativistic velocities

• Practical implications for:

– Van Allen radiation belts

– Aurora formation mechanisms

– Spacecraft charging effects
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31. Electromagnetic Phenomena

31.1 Complete Lorentz Force

A charge q moving with velocity v⃗ through both electric (E⃗) and magnetic (B⃗) fields
experiences the full electromagnetic Lorentz force:

F⃗EM = q(E⃗+ v⃗× B⃗)

• Electric Component: qE⃗ (Independent of motion)

• Magnetic Component: q⃗v× B⃗ (Velocity-dependent)

31.2 Laplace Force on Current-Carrying Conductors

31.2.1 Definition

For a straight conductor of length ℓ= PM carrying current I in perpendicular magnetic
field B⃗:

F⃗L = Iℓ⃗× B⃗

Microscopic Origin The N free electrons (charge density n) moving with drift velocity
v⃗d experience individual Lorentz forces:

Fm = evdBsinα (Per electron)

Macroscopic Formulation Converting to measurable quantities:

Ftotal = N ·Fm = nAℓ · evdB

= (neAvd) ·ℓB = IℓB

where I = neAvd is the conventional current.
Parameter Description
A Conductor cross-section
n Electron density
vd Drift velocity (∼mm/s)

31.2.2 Applications

• Electric motor operation

• Galvanometer mechanisms

• Current balance measurements
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31.3 Laplace Force Formulation

Definition The Laplace force is the electromagnetic force exerted by a magnetic field on
a current-carrying conductor:

F⃗L = Iℓ⃗× B⃗

31.3.1 Derivation from Microscopic Principles

1. Individual Electron Force:

Fm = evdBsinα (Lorentz force per electron)

2. Total Charge Motion: For N electrons moving through length ℓ:

∆t = ℓ

vd
(Transit time)

3. Current Relationship:

I = Ne
∆t

= Nevd

ℓ

4. Macroscopic Force: Combining terms:

FL = NFm = N(evdBsinα)=
(

Iℓ
vd

)
evdBsinα= IℓBsinα

31.3.2 Special Case: Perpendicular Fields (α= 90◦)

Fmax
L = IℓB (Maximum force condition)

Parameter Typical Values
I 1A-100A (industrial applications)
ℓ 0.1-1m (motor windings)
B 0.1-1T (permanent magnets)

Engineering Applications

• Motor Design: FL converts to torque τ= r×FL

• Circuit Breakers: Magnetic trip mechanisms

• Current Measurement: Moving coil instruments

The microscopic derivation validates the macroscopic form while revealing:

• Force independence from charge sign (depends on conventional current)

• Proportionality to charge carrier density n
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32. Application: Laplace Rail System

32.1 Problem Setup

A conducting bar M1M2 of length ℓ slides frictionlessly on Laplace rails, forming a closed
circuit with:

• Total resistance R

• Applied EMF E

• Uniform magnetic field B⃗ = Be⃗z (perpendicular to rail plane)

• Current direction as shown in figure

32.2 Solution

a. Current Expression Using Ohm’s Law for the circuit:

i = E
R

(Conventional current)

b. Laplace Force Formulation The force on the bar derives from:

F⃗L = iℓ⃗× B⃗

where:

• ℓ⃗= ℓ⃗e y (bar vector)

• B⃗ = Be⃗z (field direction)

F⃗L =
(

E
R

)
ℓ⃗e y ×Be⃗z = EℓB

R
e⃗x

Parameter Physical Meaning
e⃗ y × e⃗z = e⃗x Right-hand rule basis
EℓB

R Force magnitude

32.3 Energy Considerations

• Power Input: Pin = Ei = E2

R

• Mechanical Power: Pmech = F⃗L · v⃗
• Energy Balance: Pin = Pmech + I2R (Joule heating)
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[Numerical Application] For E = 12V , R = 4Ω, ℓ= 0.5m, B = 0.8T:

i = 3 A, FL = 1.2 N (in e⃗x direction)

Solution

a. By applying the loop (mesh) rule to the closed circuit, we obtain:

E = iR ⇒ i = E

R

b. The Laplace force exerted on the bar M1M2 is:

F⃗ = i ⃗M2M1 ∧ B⃗ =−iℓ e⃗ y ∧B e⃗z

F⃗ =−iℓB e⃗x ⇒ F⃗ =−E

R
ℓB e⃗x

Representation of the force F⃗:

Figure 37: Diagram showing the direction of the current i and the Laplace force F⃗ on the
bar in the magnetic field B⃗

32.4 Biot–Savart Law

Around 1820, Jean-Baptiste Biot and Felix Savart empirically established the law that
governs the generation of a magnetic field by an electric current.

Let us consider a conducting wire describing a curve C, carrying a current of intensity
I (see Figure 12).

We consider at a point P an elementary portion of the wire oriented as dℓ⃗.
The position vector of a point M relative to point P is r⃗ =−−→

PM.
The elementary magnetic field created at M according to the Biot–Savart law is given

by:

dB⃗ = µ0

4π
Idℓ⃗∧ r⃗

r3 = µ0

4π
Idℓ⃗∧ u⃗PM

r2

where µ0 is the magnetic permeability of vacuum, µ0 = 4π×10−7 S.I.
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Figure 38: Element of conducting wire carrying a current I

32.5 Properties of a Magnetic Field Created by a Current

• The magnetic field produced is perpendicular to the plane defined by d⃗ℓ and r⃗.

• The direction of the magnetic field is determined using the right-hand (corkscrew)
rule (see Figure 13).

NOTE:
The direction of the magnetic field vector is given by the orientation of the thumb,
with the index finger indicating the direction of the current.

• To obtain the total magnetic field at a point M, one must sum all the elementary
magnetic fields produced by each element of wire:

B⃗(M)=
∫

C
dB⃗ =

∫
C

µ0

4π
Idℓ⃗∧ u⃗r

r2

32.5.1 Infinite Straight Wire

We consider an infinite straight wire carrying a constant current I. We aim to calculate
the magnetic field created at point M by an element dO⃗P observed at an angle α as shown
in Figure 14.

According to the Biot–Savart Law:

dB⃗ = µ0

4π
IdO⃗P ∧−−→

PM

||−−→PM||3
From Figure 14, we have:

−−→
PM =−−→

PO+−−→
OM
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Figure 39: Magnetic field at point M due to a current element dO⃗P

PM = a
cosα

OP = PM sinα= atanα⇒

dOP = a dα
cos2α

In the Cartesian coordinate system, this magnetic field is written as:

dB⃗ = µ0I
4π

(dO⃗P ∧ (P⃗O+ O⃗M))

∥P⃗M∥3
⇒ dB⃗ = µ0I

4π
(dO⃗P ∧ P⃗O+dO⃗P ∧ O⃗M)

∥P⃗M∥3

dB⃗ = µ0I
4π

(dO⃗P ∧au⃗x)

∥P⃗M∥3
= µ0I

4π
a(dO⃗P ∧ u⃗x)

∥P⃗M∥3

By symmetry, only the component along the vector k⃗ is non-zero, so:

dB⃗ = dBz k⃗ = µ0I
4π

a dOP

∥P⃗M∥3
k⃗ = µ0I

4π
cosαdα

a
k⃗

The intensity of the total field created by the infinite wire is:

B =
∫

dBz =
∫ π/2

−π/2

µ0I
4π

cosα
a

dα

B = µ0I
2πa
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32.5.2 Circular Loop

Let us consider a circular loop of radius R carrying a constant current I. We aim to
calculate the magnetic field created at point M, which lies on the z-axis of the loop (Figure
15).

Figure 40: Magnetic field at point M created by a current-carrying circular loop

From Figure 40, we observe that:

−−→
PM =−−→

PO+−−→
OM and PM = R

sinα
In cylindrical coordinates, we have:

dO⃗P = dOP u⃗θ = Rdθ u⃗θ

Substituting these equations into the Biot–Savart law, we get:

dB⃗ = µ0I
4π

dO⃗P ∧−−→
PM

∥−−→PM∥3
= µ0IRdθ

4π
u⃗θ∧ (−Ru⃗r + z⃗k)

∥−−→PM∥3

dB⃗ = µ0I
4π

(R2dθk⃗+Rzdθu⃗r)
R3/sin3α

By symmetry, diametrically opposite points on the loop produce magnetic fields whose
radial components cancel out. Thus, only the z-component remains:

dB⃗ = dBz k⃗ = µ0I
4πR

sin2αdθ k⃗

The total magnetic field created by the loop at point M is:

B =
∮

dBz = µ0I
4πR

sin2α

∫ 2π

0
dθ

B = µ0I
2

R2

(R2 + z2)3/2
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33. Application

An infinite straight wire is carrying a constant current of 10 A.

1. What is the intensity of the magnetic field produced by this current at a distance of 5
cm from the wire?

2. Could this magnetic field disturb a compass? Knowing that the Earth’s magnetic
field intensity is 2.2×10−5 T.

Solution

1. The intensity of the magnetic field created at a distance r from an infinite wire is
given by:

B = µ0

2π
· I

r

Numerical application:
B = 4×10−5 T

2. This magnetic field would disturb a compass, as it is twice as intense as the Earth’s
magnetic field.

Magnetic Dipole

A magnetic dipole for the magnetic field is equivalent to the electrostatic dipole for the
electric field. It is characterized by the magnetic moment vector (or magnetic dipole
moment).

33.1 4.7.1 Magnetic Moment

In physics, the magnetic moment is a vector quantity that characterizes the strength of a
magnetic source. This source may be an electric current, or a magnetized object.

The magnetic moment of a body is manifested by the tendency of that body to align in
the direction of a magnetic field B⃗, as does a compass needle.

Consider a loop of surface S carrying a current of intensity I (Figure 16). Its magnetic
moment µ⃗ is defined as:

µ⃗= I ·S · n⃗
It is expressed in ampere-square meters (A·m2).

n⃗ is the unit vector normal to the surface S.
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Figure 41: Magnetic moment of a loop carrying current
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