Uncertain decision

Work 1 (Markov chain)

Exercice 1.

Let's consider a markov chain with transition matrix as follows:

$$\mathbf{A} = \begin{bmatrix} 0.6 & 0.4 & 0 \\ 0.2 & 0.5 & 0.3 \\ 0 & 0.4 & 0.6 \end{bmatrix}$$

- 1- Make the graphical representation of the chain.
- 2- Check that the chain is irreducible and calculate the peridicity of states.
- 3- Calculate the stationary distribution of states.

Exercice 2.

Consider the following transition matrix:

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.45 & 0.05 \\ 0.1 & 0.5 & 0.4 \\ 0 & 0.1 & 0.9 \end{bmatrix}$$

- 1- Calculate the probability of the following trajectories (h, a, f, h), (h, a, f, a), (a, a, a).
- 2- Calculate the distribution at t = 1 if we assume $\pi^0 = (1, 0, 0)$.
- 3- Show that a uniform distribution $X_0 = (1/3, 1/3, 1/3)$ is not a stationary distribution for this Markov chain.
- 4- Calculate the stationary Matrix, if it exists.

3. Exercice 3

Let's consider the markov chain, viewed in the course, that represents changes in weather, with the transition matrix as follows.

Uncertain decision

$$\mathbf{P} = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.05 & 0.8 & 0.15 \\ 0.3 & 0.0.2 & 0.5 \end{bmatrix}$$

- Simulate the chain using the Monte-Carlo method method and Calculate the stationary distribution of states.
- -find the stationary matrix.
- -find the stationary distribution by calculating the left eigenvector of the matrix.