
Dr. Sadek Benhammada – U.C. of Mila 1/6

Exercise 1 (Inheritance, method overriding, access rights, super keyword)

We have the following code:

class Point {
 private double x;
 private double y;

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public String toString() {
 return "(" + this.x + "," + this.y + ")";
 }
}

1. Declare a class PointName, a subclass of Point, allowing manipulation of points defined by their

coordinates and a name (of type char).

2. Declare a constructor that initializes the attributes of an object created from the PointNom class.

3. We want to define a method move(double dx, double dy) in the PointName class. Make the

necessary changes for the declaration of this method, then declare it.

4. Override the toString() method in PointName to display a string in the form: name(x,y). Example:

A(5,10). (The overridden toString() method should make use of the toString() method from the

superclass Point.).

5. Create a T ;,est class with no attributes and a single main() method:

▪ Cretae an object of type PointName, providing a character as the name and two double values as the

coordinates ('A', 5, 10).

▪ Display the initial state of the object using the toString() method.

▪ Call the move(double dx, double dy) method to change the coordinates of the point (move by

(dx=2, dy=3)).

▪ Display the updated state of the object after the movement.

University Center Abdelhafid Boussouf - Mila

Institute of Mathematics and Computer Science

2nd Year Computer Science Bachelor's Program

Academic Year: 2024-2025

Subject: Object-Oriented Programming

Tutorial/ Practical Series No. 3

Dr. Sadek Benhammada – U.C. of Mila 2/6

Exercise 2 (Abstraction, type casting)

Given the following code:

public class Shape {
 public abstract double getArea();

 public boolean isLargerTha(Shape s){
 return this. getArea () > s.getArea ();
 }
}

public class ShapeName extends Shape {

 private char name;
 public ShapeName (char name) {
 this. name = name;
 }

}

public class Rectangle extends Shape {
 private double length;
 private double weidth;

 public Rectangle(double length, double weidth){
 this.length = length;
 this.weidth = weidth;
 }
}

public class TestShape {
 public static void main(String[] args) {
 Shape s = new Shape();
 ShapeName sn = new ShapeName('A');
 Rectangle r1 = new Rectangle(5,10);
 Rectangle r2 = new Rectangle(6,8);
 System.out.println(r1.isLargerThan(r2));
 }
}

• Identify and correct the errors in the above code.

• The underlined statements are correct. Explain why.

Exercise 3 (Method overriding, method lookup, polymorphism)

Dr. Sadek Benhammada – U.C. of Mila 3/6

Given the following code:

class Person {
 public void displayClass() {
 System.out.print("I am a Person");
 }
}

class Student extends Person {
 private String fieldOfStudy;
 public Student(String fieldOfStudy) {
 this.fieldOfStudy = fieldOfStudy;
 }

 public void displayFieldOfStudy() {
 System.out.print(", my field is: " + this.fieldOfStudy);
 }

 @Override
 public void displayClass() {
 System.out.print("I am a Student");
 displayFieldOfStudy();
 }
}

class Employee extends Person {}

class StudentRepresentative extends Student {
 public StudentRepresentative(String fieldOfStudy) {
 super(fieldOfStudy);
 }
}

public class MethodOverridingTest {
 public static void main(String[] args) {
 Person p = new Person();
 p.displayClass();
 System.out.println();

 Employee e = new Employee();
 e.displayClass();
 System.out.println();

 Student s = new Student("Computer Science");
 s.displayClass();
 System.out.println();

 StudentRepresentativer = new StudentRepresentative ("Math");
 r.displayClass();
 System.out.println();
 }
}

Dr. Sadek Benhammada – U.C. of Mila 4/6

public class PolymorphismTest {
 public static void main(String[] args) {
 Person p = new Person();
 Student s = new Student("Computer Science");

 Person p1 = new Student("Math");
 p1.displayClass();
 p1.displayFieldOfStudy();
 Student s1 = new Person();
 s = p;
 s = (Student) p1;
 p = s;

 Object o = p;
 }
}

1. What will be displayed when running the class MethodOverridingTest? Justify your answers.

2. In the class PolymorphismTest, are the underlined statements correct? Justify your answer and suggest

corrections if possible.

3. What will the PolymorphismTest class display after correction/removal of erroneous statements?

Justify your answer.

Dr. Sadek Benhammada – U.C. of Mila 5/6

Exercise 4: Inheritance and Interfaces – Course Evaluation System

A course is characterized by the following attributes:

• title (String) – the name of the course

• credit (int) – the number of credits

• coefficient (int) – the weight in the average

• examGrade (double) – the final exam grade

The class Course implements an interface called Evaluable.

The Evaluable interface declares two abstract methods:

double calculateAverage();

int calculateCreditsEarned();

The class Course has three subclasses:

1. LectureCourse – course with lectures only

2. LectureTutorialCourse – course with lectures and tutorials

3. LectureTutorialPracticalCourse – course with lectures, tutorials, and practicals

Rules for Calculating Averages :

• LectureCourse :
average = examGrade

• LectureTutorialCourse

Includes a tutorialGrade (double)

Constant: COEF_TUTORIAL = 0.33

average = examGrade * (1 - COEF_TUTORIAL) + tutorialGrade * COEF_TUTORIAL

• LectureTutorialPracticalCourse

Includes tutorialGrade and practicalGrade (both doubles)

Constants: COEF_TUTORIAL = 0.2, COEF_PRACTICAL = 0.2

average = examGrade * (1 - COEF_TUTORIAL - COEF_PRACTICAL) +

 tutorialGrade * COEF_TUTORIAL +

 practicalGrade * COEF_PRACTICAL

Rule for Credit Acquisition

If the calculated average ≥ 10, the full course credit is awarded.

Otherwise, the earned credit is 0.

Dr. Sadek Benhammada – U.C. of Mila 6/6

Required Tasks

1. Define the interface Evaluable and the class hierarchy:

▪ Course (base class)

▪ LectureCourse, LectureTutorialCourse, and LectureTutorialPracticalCourse

(subclasses)

2. In each class:

▪ Create a constructor with parameters

▪ Declare getter and setter methods for all attributes

3. Override the toString() method in the superclass and each subclass.

The output format should resemble:

Course Title: Object-Oriented Programming

Credits: 5

Coefficient: 3

Exam Grade: 10.0

Tutorial Grade: 10.0

Practical Grade: 10.0

Average: 10.0

Credits Earned: 5

4. Write a class MainProgram with no attributes and a main() method that:

▪ Declares a list of Course objects (use ArrayList<Course>)

▪ Fills the list with courses from the 4rd semester of the 2nd year in Computer Science

▪ Displays the details of each course using the overridden toString() method

