
Mila University Center

2nd Year – Bachelor's in Computer Science

Course: Object-Oriented Programming

Chapter III:

Inheritance and Polymorphism

Lecturer : DR. SADEK BENHAMMADA

EMAIL : s.benhammada@centre-univ-mila.dz

1. General

2

1.1. Definition

• Inheritance is a fundamental concept of object-oriented programming that defines a
hierarchical relationship between a general class (also called base class or superclass)
and a specialized class (subclass or derived class).

• The subclass:
• Inherits all attributes and methods of the superclass,

• Can add new attributes and methods, and

• Can override non-static methods of the superclass to redefine their behavior.

• In Java:

• A class may have multiple subclasses,

• A class can extend only one superclass → Java does not support multiple inheritance directly.

3

2. Implementing inheritance

4

• In Java, a class inherits from another class using the keyword extends:

• Example

An object of the Student class :
1. Inherits the attributes and methods of the Person class :

• It must have a value for all attributes of the Person class

• It can use all the methods of the Person class

2. Has additional attributes and methods
3. Can override some non-static methods of the Person class

2.1. Declaring a Subclass

5

class Student extends Person {
private String field;

public String getField() { return field; }
public void setField(String f) { field = f; }

}

class Person {
protected int id;
protected String firstName;
protected String lastName;

public String getName() { return lastName; }
}

public class SubClass extends SuperClass {
// attributes and methods

}

2.2. Access Modifiers and Inheritance

• Attributes and methods defined with the public access modifier are accessible by
subclasses and all other classes.

• An attribute defined with the private modifier is inherited but is not directly accessible by
subclasses.

• An attribute defined with the protected modifier is directly accessible in all girls' classes

Best Practice:
• Use protected for superclass attributes to allow direct access in subclasses.
• Use public for methods that should be accessible universally.

6

2.2. Access Modifiers and Inheritance

• Example

7

class Student extends Person{
private String field ;
public String getFile (){...}
public void setFile (String f){...}
//...

}

class Employee extends Person{
private String jobTitle;
public String get jobTitle (){...}
public void setjobTitle (String j){...}

//...
}

public class Person {
protected int id;
protected String firstName ;
protected String lastName;
public String getFirstName (){return this.firstName;}

//...
}

2.3. Constructors in Subclasses

• A subclass constructor must explicitly call the superclass constructor using the super() keyword.

• This call must be the first statement in the subclass constructor.

• Example :

8

public class Student extends Person {
private String major; // Spécialité de l'étudiant

public Student(String firstName, String lastName, String major) {
super(firstName, lastName);
this.major = major;

}
}

public class Person {
protected String firstName;
protected String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}
}

3. Method Overriding

9

3. Method Overriding

• Method overriding is when a subclass redefines a method from its superclass with the same
name and parameters.

➢ The method name and parameters must remain the same.

➢ If parameters differ, it is not overriding but overloading.

Example : Overriding toString() method

10

public class Person {
protected String firstName;
protected String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public String toString() {
return "Name: " + firstName + " " + lastName;

}
}

public class Student extends Person {
private String field;

public Student(String firstName, String lastName, String field) {
super(firstName, lastName);
this.field = field; }

@Override
public String toString() {

return return "Name: " + firstName + " " + lastName + ", Field: " + field;
}

public static void main(String[] args) {
Student s = new Student("Ali", "Ahmed", "Computer Science");
System.out.println(s.toString());

}
}

3. Method Overriding

Using super

• super.attributeName: Accesses an attribute from the superclass.

• super.methodName(): Calls a method from the superclass.

• super is useful when extending functionality rather than completely replacing it.
Example: Calling the toString() method of the superclass Person within the toString() method of the subclass Student

11

11

public class Person {
protected String firstName;
protected String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public String toString() {
return "Name: " + firstName + " " + lastName;

}
}

public class Student extends Person {
private String field;

public Student(String firstName, String lastName, String field) {
super(firstName, lastName);
this.field = field;

}

@Override
public String toString() {

return super.toString() + ", Field: " + field;
}

public static void main(String[] args) {
Student s = new Student("Ali", "Ahmed", "Computer Science");
System.out.println(s.toString());

}
}

4. Abstraction

12

4. Abstraction

• Definition: Abstraction hides complex implementation details and only exposes necessary
functionality:
• Achieved through abstract classes and interfaces.
• Defines what an object should do, not how it does it.

• Reduces code complexity.

• Abstraction applies to methods and classes:
• An abstract method is a method without implementation that must be implemented by

subclasses.

• Any class that has at least one abstract method must be declared abstract :

• abstract class cannot be instantiated (Objects of an abstract class cannot be created).
• An abstract class can have subclasses that implement the abstract methods.
• if a subclass of an abstract class does not implement all of its abstract methods, then it too must

be declared abstract.
13

abstract returnType methodName (tpyparams);

abstract class ClassName { ... }

4. Abstraction

• Example:

14

// Abstract base class
abstract class Shape {

// Abstract method (must be implemented in subclasses)
public abstract double getArea();

// Concrete method that call the abstract method
public boolean isLargerThan(Shape s) {

return this.getArea() > s.getArea();
}

}

// Concrete subclass representing a rectangle
public class Rectangle extends Shape {

private double width, height;

public Rectangle(double width, double height) {
this.width = width;
this.height = height;

}

@Override
public double getArea() {

return width * height;
}

}

// Concrete subclass representing a circle
public class Circle extends Shape {

private double radius;

public Circle(double radius) {
this.radius = radius;

}

@Override
public double getArea() {

return Math.PI * radius * radius;
}

}

4. Abstraction

Example (continued)

• The abstract class Shape defines the common interface for all geometric shapes by declaring an
abstract method getArea().

• The abstract method getArea() represents the conceptual operation of computing the surface
area, but without specifying how the computation is performed.

• Subclasses such as Rectangle and Circle are required to provide concrete implementations of this
method, in a function of their specific geometrical formulas.

• The method isLargerThan(Shape s) in the Shape class utilizes getArea() to compare the areas of
two shapes.

• Since each subclass provides its own implementation of getArea(), the correct behavior is invoked
at runtime based on the actual type of the object.

• Any subclass (Circle, Rectangle, etc.) can use isLargerThan(Shape s) without rewriting it. It just
need to implement getArea() .

15

4. Abstraction

Example (continued)

16

public class Main {
public static void main(String[] args) {

Shape circle = new Circle(3); // Area ≈ 28.27
Shape rectangle = new Rectangle(4, 5); // Area = 20.0

// Comparing two shapes using isLargerThan
if (circle.isLargerThan(rectangle)) {

System.out.println("The circle is larger than the rectangle.");
} else {

System.out.println("The rectangle is larger than or equal to the circle.");
}

}
}

5. Polymorphism

17

5. Polymorphism

5.1. Polymorphism
• Polymorphism is the ability of the same method call (or message) to result in different behaviors depending

on the actual type of the object that receives it.

• In Java, polymorphism is achieved through inheritance, interfaces, method overriding, and object cating

18

Shape s = new Rectangle(5, 10);

Shape c = new Circle(10);

System.out.println(s.getArea()); // Executes Rectangle’s getArea()

System.out.println(c.getArea()); // Executes Circle’s getArea()

5. Polymorphism

5.2. Object casting
• Object casting refers to the process of converting one object reference type into another

• Object casting can be categorized into upcasting and downcasting.

5.2.1. Upcasting (implicit): Subclass → Superclass

• Upcasting refers to the conversion of a child class reference to a parent class type.

• It is implicit and does not require a cast operator.

5.2.2. Downcasting (explicit): Superclass → Subclass

• Downcasting refers to converting a parent class reference back to a child class type.

• It is explicit and requires the use of the cast operator (Subclass).

• Downcasting is typically used to access methods or fields specific to the subclass, which
are not available in the parent class. 19

5. Polymorphism

5.2. Object cast
• An object has two types:

1. Declared Type (Reference Type):
• This is the type of the reference variable used to refer to the object.

• It is verified at compile-time by the Java compiler (javac).

2. Actual Type (Runtime Type):
• Determined by the constructor used during the object's creation.

• It is checked at runtime by the Java Virtual Machine (JVM).

Example 1

20

public class Person{
private String name;
//...
private void setName (String n){ this.name =n;}
}

public class Student extends Person{
private String field ;
//...
private void setField (String f){ this.field =f;}

}

Person pers = new Student();

Declared type Actual type

5. Polymorphism

5.2. Object casting

Example 1 (continued)

21

Code Correct/Error Explanation

Student e = new Student(); Correct A Student reference is assigned to a Student object, which is valid.

Person p = new Student(); Correct A Person reference is assigned to a Student object, valid due to Upcasting.

Student e = new Person(); Compilation Error
A Student reference cannot hold a Person object (as not all Person objects are
Student objects)

Student e= new Student();
Person p = e;

Correct A Person reference is assigned to a Student object. This is valid due to upcasting.

Student e= new Student();
Object obj = e;

Correct
A Student reference can be assigned to an Object reference, as all classes in Java
inherit from Object.

Person p = new Student();
Student e = p;

Compilation Error
A Person reference cannot be directly assigned to a Student reference without
explicit downcasting.

Person p = new Student();
Student e = (Student)p;

Correct

Upcasting: Person p = new Student(); is valid as a Student object can be referred to
by a Person reference.
Downcasting: e = (Student)p; works since p refers to a Student object, making the
explicit cast

5. Polymorphism

5.2. Object casting

Example 1 (continued)

22

Code Correct/Error Explanation
Person p = new Student();
p.setName("Ahmed");

Correct setName () is a method of the declared type of p1 (Person)

Person p = new Student();
p.setField("Math");

Compilation
Error

The setField() method is not part of the Person class, so it
cannot be called using a Person reference without explicit
downcasting.

Person p=new Student();

((Student)p).setField("Math"); Correct
Correct : Downcasting Superclass → Subclass, and the

real type of p is Student.

5. Polymorphism

• Example 2

23

public class Person {
protected String name;
protected String firstName;
protected int age;

// Constructor
public Person(String name, String firstName, int age) {

this.name = name;
this.firstName = firstName;
this.age = age;

}

// Method to compare ages
public boolean isOlderThan(Person p) {

return this.age > p.age;
}

}

public class Student extends Person {
private String field;

// Constructor
public Student(String name, String firstName, int age, String

field) {
super(name, firstName, age);
this.field = field;

}

// Method specific to Student
public String getField() {

return field;
}

5. Polymorphism

• Example 2 (continued)

24

public class Test {
public static void main(String[] args) {

// Create a Person object
Person person = new Person("Idir", "Kamel", 20);

// Create a Student object
Student student = new Student("Mohammed", "Ali", 22, "Computer Science");

// Use the isOlderThan method

boolean result = person.isOlderThan(student); // (UpCasting)

System.out.println("Is Person older than Student? " + result);

// Downcasting example: Access Student-specific method

Person anotherPerson = new Student("Sara", "Ahmed", 21, "Mathematics"); // Upcasting
}
}

5. Polymorphism

5.3. The instanceof operator

• instanceof operator is used to test whether an object is an instance of a given type or one
of that type's subclasses.

Example

25

public class Student extends Person{}

public class Person{}

public class Employee extends Person{}

public class Test {
public static void main(String arg []){
Person e = new Student();
System.out.println (e instanceof Student); // true
System.out.println (e instanceof Person); // true
System.out.println (e instanceof Employe); // false

5.3. Uses of Polymorphism
Example:

5. Polymorphism

26

// Superclass
public abstract class Shape {

public abstract double getArea();
}

// Subclass: Rectangle
public class Rectangle extends Shape {

private double length;
private double width;

// Constructor
public Rectangle(double length, double width){

this.length = length;
this.width = width;

}

// Implement getArea
@Override
public double getArea() {

return length * width;
}

}

// Subclass: Cirlce
public class Circle extends Shape {

private double radius;

// Constructor
public Circle(double radius) {

this.radius = radius;
}

// Implement getArea
@Override
public double getArea() {

return Math.PI * radius * radius;
}

}

5.3. Uses of Polymorphism
Example(continued):

5. Polymorphism

27

public class TestPolymorphism {
public static void main(String[] args) {

// Create an array of Shape references
Shape[] shapes = new Shape[4];

// Populate the array with Rectangle and Circle objects
shapes[0] = new Rectangle(5, 10); // Upcasting
shapes[1] = new Circle(5); // Upcasting
shapes[2] = new Rectangle(10, 20); // Upcasting
shapes[3] = new Circle(10); // Upcasting

// Display the list of shapes and their areas
System.out.println("List of shapes and their areas:");
for (int i = 0; i < shapes.length; i++) {

if (shapes[i] instanceof Rectangle) {
System.out.println("A rectangle of area: " + shapes[i].getArea());

} else if (shapes[i] instanceof Circle) {
System.out.println("A circle of area: " + shapes[i].getArea());

}
}

}
}

Lists of shapes and their areas
A rectangle of area:50.0
A Circle of areas : 78.54
A rectangle of area: 200.0
A Circle of areas : 314.16

5. Polymorphism

5.3. Uses of Polymorphism :

1. Code Reusability: Write general code for a superclass that works for all its subclasses.

• Example: Using a Shape superclass with methods applicable to all shapes (Example : getArea()).

2. Extensibility: Add new subclasses without changing existing code that uses the superclass.

• Example: Adding a Triangle as a subclass of Shape without modifying the existing Shape superclass or

other subclasses like Rectangle or Circle.

3. Dynamic Behavior: Method calls are resolved at runtime, allowing behavior to depend on the object's

actual type.

• Example: A : getArea() method behaves differently for Circle and Rectangle.

4. Simplifies Maintenance: Reduces code duplication and then simplifies maintenance.

• Example: A Shape superclass with common methods like isLargerThan(Shape s) for all types of

Shapes.

• …

28

6. The final Keyword

29

6. ThefinalKeyword

• final keyword applies to attributes, methods and classes.

30

Usage Meaning

final attribute The value of the attribute cannot be changed after it is initialized.

final method
The method cannot be overridden by subclasses, ensuring its implementation is
preserved.

final class The class cannot be extended, preventing any subclass from being created.

6. ThefinalKeyword

6.1. Final variables

• A variable declared final can no longer have its value modified (a constant) .

• If it is an attribute, constants are also declared static, to save memory space (one copy for
all objects).

Example

31

public class Circle extends Shape {
static final double PI= 3.141592653589793 ;

private double beam;
public Circle(double r) {
radius=r;
}

public double getSurface () {
return radius*radius*PI;

}
}

6. ThefinalKeyword

6.2. Final methods

• A final method in Java cannot be overridden by any subclass. Subclasses must use the
inherited method as-is, ensuring its implementation remains unchanged across the
inheritance hierarchy.

• Example

32

// Subclass attempting to override the final method
public class B extends A {

// The following method will cause a compilation error
@Override
public void method() {

System.out.println("Attempting to override the final method."); // Error
}

}

// Final class example
public final class A {

public final void method() {
System.out.println("This is a final method in a final class.");

}
}

6. ThefinalKeyword

6.3. Final classes
• A final class cannot be extended.
• No subclass can inherit from a final class.
• The class’s attributes and methods of final class are locked and cannot be altered via inheritance.

Example

• Many classes in the Java library are final , including: java.lang.System,
java.lang.String , and java.lang.Math

33

public final class MyClass {
// class body
}

public class SubClass extends MyClass {
// Error: Cannot inherit from final class
}

7. Interfaces

34

7. Interfaces

• With multiple inheritance, a class can inherit from multiple superclasses .

• Multiple inheritance does not supported in Java.

• Interfaces allow multiple inheritance to be replaced,

• An interface is a reference type that can contain:
✓ Abstract methods (by default),
✓ Constants (public static final),
✓ Default methods (with a body, using default),

• The methods of an interface are public abstract: they are implicitly declared with the public modifier and
abstract ;

• The attributes of an interface are public constants, they are implicitly declared with the modifiers public ,

static and final .

• A default method of an interface is a method defined by its signature and its implementation.
35

[public] interface interfaceName [extends Interface1, Interface2 ...

] {

// body of the interface

}

Declaring an interface:

7. Interfaces

Implementing an interface

• A class implements an interface, inheriting the methods and constants of the interface.

• A class can implement multiple interfaces;

• The class must provide concrete implementations for all abstract methods otherwise it is declared
abstract.

• If an interface has default methods, instances of concrete classes that implement that interface
can call those methods.

• Classes can also override the default methods of the interfaces they implement.
36

[Modifiers] class className [extends superClass]

[implements interfacename1, interfacename 2, ...]

{

//class body

}

Implementing an interface

7. Interfaces

Example

37

public interface Identifiable {
String getLastName();
String getFirstName();

}

public interface Describable {
void describe();

}

public class Car implements Describable {

@Override
public void describe() {

System.out.println("I am a car.");
}

}

7. Interfaces

Example (continued)

38

public class Student implements Identifiable, Describable {
private String lastName;
private String firstName;

public Student(String lastName, String firstName) {
this.lastName = lastName;
this.firstName = firstName;

}
@Override
public String getLastName() {

return lastName;
}
@Override
public String getFirstName() {

return firstName;
}
@Override
public void describe() {

System.out.println("I am a student named " + firstName + " " + lastName + ".");
}

}

7. Interfaces

Example 2

39

public interface GeometricShape {

double PI = 3.14;

double calculateArea();

double calculatePerimeter();

default double square(double value) {

return value * value;

}

}

public class Circle implements GeometricShape {

private double radius;

public Circle(double radius) {

this.radius = radius;

}

@Override

public double calculateArea() {

return square(radius) * PI;

}

@Override

public double calculatePerimeter() {

return 2 * PI * radius;

}

}

8. Enumerations (Enums)

40

8. Enumerations (Enums)

• An enumeration (or enum) is a special data type that enables a variable to be a set of predefined
constants.

• Enums are used when a variable (such as a day of the week, a direction, or a state) can only take
one value out of a finite and fixed set.

• Example

41

public enum Field {
COMPUTER_SCIENCE, MATHEMATICS, ECONOMICS, LITERATURE

}

8. Enumerations (Enums)

Example (continued)

42

public class Student extends Person {
private Field field; // Academic field

public Student(String firstName, String lastName, int age, Field field) {
super(firstName, lastName, age);
this.field = field;

}

public Field getField() {
return field;

}

@Override
public String toString() {

return super.toString() + ", Field: " + field;
}

public static void main(String[] args) {
Student student = new Student("Mohammed", "Ali", 20, Field.COMPUTER_SCIENCE);
System.out.println(student);

}
}

9. Arrays and Collections

43

9. Arrays and Collections

9.1. Arrays
• An array is a data structure that allows to group multiple values of the same type under a single identifier.

• Arrays are used to store fixed-size collections of elements and provide indexed access to each element.

• Syntax

44

<type> <arrayName> [] =new <type> [n]

Or:
<type> [] <arrayName> = new <type> [n]

int tab[] = new int [10]; // declaration and creation of an array of 10
integers

char tabc []; // declaration
tabc = new char[10]; //creation
Person tabP =new Person[10] // declaration of an array of objects of the
Person class

tab
0 1 2 3 4 5 6 7 8 9

9. Arrays and Collections

• Java does not directly support multi-dimensional arrays, the solution is to declare an array
of arrays :

Example
int tab [][]=new int [5][10]

45

<type> <arrayname> [][] =new <arrayname> [n][p]

Or

<type> [][] < arrayname >=new < arrayname > [n][p]

tab 0 1 2 3 4 5 6 7 8 9

0
1
2
3
4

0 1 2 3 4 5 6 7 8 9

.

.

.

9. Arrays and Collections

9.1.2. Initialization
• In Java, it is possible to initialize an array at the time of its creation or by assigning values manually.

• Examples

9.1.3. Iterating through Arrays

• An array has a public constant length whose value is the size of the array. This constant
can be used to iterate through it.

Example

46

:

int tab1[] = {10,20,30,40,50};

int tab2[][] = {{5,1},{6,2},{7,3}};

int[] values = new int[3];

values[0] = 5;

values[1] = 10;

values[2] = 15;

int[] data = {3, 6, 9, 12};
for (int i = 0; i < data.length; i++) {

System.out.println("Element at index " + i + ": " + data[i]);
}

9. Arrays and Collections

• In Java, arrays have a fixed size. Once an array is created, its length cannot be changed.

• For example, if you declare an array of 20 elements, you are limited to storing exactly 20

elements, no more, no less.

• To overcome this limitation, Java provides a flexible and powerful set of classes known as the Java
Collections Framework (JCF), available in the java.util package.

• Key Features of Collections
• Collections are resizable: Their size can grow or shrink dynamically.

• They are designed to manage groups of objects efficiently.

• Collections provide higher-level operations like sorting, searching, filtering, and iteration.

• Common Collection Types

47

Type Description Example Class
List Ordered collection, allows duplicates ArrayList, LinkedList, Vector
Set Unordered, no duplicates allowed HashSet, TreeSet
Map Stores key–value pairs HashMap, TreeMap
Queue First-In-First-Out (FIFO) structure PriorityQueue, ArrayDeque

9. Arrays and Collections

9.2. Collections: ArrayList and LinkedList

• Among the most commonly used are ArrayList and LinkedList,

• ArrayList and LinkedList are part of the Java Collections Framework and implement the List

interface.

• Some methods of the List interface:

48

Method Description
add(E element) Appends an element to the end of the list.
add(int index, E element) Inserts an element at a specified index.
get(int index) Retrieves the element at the specified index.
set(int index, E element) Replaces the element at the specified index with a new element.
remove(int index) Removes the element at the specified index.
remove(Object o) Removes the first occurrence of the specified object.
size() Returns the number of elements in the list.
isEmpty() Returns true if the list contains no elements.
contains(Object o) Returns true if the list contains the specified element.
clear() Removes all elements from the list.
indexOf(Object o) Returns the index of the first occurrence of the specified element.
lastIndexOf(Object o) Returns the index of the last occurrence of the specified element.

9. Arrays and Collections

9.2. Collections: ArrayList and LinkedList

49

Feature ArrayList LinkedList

Underlying structure Dynamic array Doubly linked list

Access speed Fast random access (index-based) Slower access (sequential traversal)

Insertion/removal Slower insertion/removal Faster insertion/removal

9. Arrays and Collections

• 9.2.1. ArrayList

• An ArrayList uses a dynamic array to store a collection of objects. It can automatically resize when

elements are added or removed.

• Advantage: Very fast element access (reading by index).

• Disadvantage: Insertion and deletion at arbitrary positions can be costly (due to shifting elements).

• To use ArrayList:

• Import the ArrayList class :

• Creating the list:

• Once created, the list can be manipulated using methods such as: add(), get(), remove(),
set(), size(), etc.

50

import java.util.ArrayList ;

ArrayList<String> names = new ArrayList<>();

9. Arrays and Collections

9.2.2. LinkedList

• A LinkedList in Java is implemented as a doubly linked list, where each node contains references to both the
next and the previous elements.

• This allows for efficient traversal in both directions and improves the performance of insertions and
deletions at both ends of the list.

• .

• To use LinkedList :

• Import the LinkedList class :

• Creating the list:

• Once created, the list can be manipulated using methods such as: add(), get(), remove(),
set(), size(), etc.

51

import java.util.LinkedList ;

LinkedList <String> names = new LinkedList <>();

9. Arrays and Collections

9.2. Collections: ArrayList and LinkedList

ArrayList and LinkedList are generic and can be declared to hold heterogeneous types of objects:

• Example:

52

import java.util.ArrayList ;
public class TestArrayList {
public static void main(String arg []){

ArrayList myList = new ArrayList ();
myList.add ("Hello");
myList.add (12);
Person p=new Person("Ahmed", "Ali");
myList.add (p);
for(int i = 0; i < myList.size () ; i++)

System.out.println (" Element "+i+" = "+ myList.get (i));
}
}

Note:
Values of primitive types (int, double, float, char, etc.), stored in ArrayList or LinkedList are automatically converted into
objects of their corresponding wrapper classes (Integer, Double, Character, etc.).

public class Person{...}

9. Arrays and Collections

9.2. Collections: ArrayList and LinkedList

• It is possible to create a homogeneous ArrayList and LinkedList , in which the
elements are limited to a specific type:

• Example

53

ArrayList < typeElements > myList = new ArrayList < typeElements > ();

ArrayList <Person> myList =new ArrayList <Person> ();

myList.add ("Hello"); // Compilation error

myList.add (12); // Compilation error

Person p=new Person("Ahmed", "Ali");

myList.add (p); //Correct

10. Core Java Packages

54

10. Core Java Packages

• Java provides a large set of built-in packages collectively known as the Java Standard API, which

contains thousands of classes grouped by functionality.
• These packages are organized under the java.* and javax.* namespaces.

• You can consult all the API documentation on the site: http://download.oracle.com/javase/1.4.2/docs/api/
Key Core Packages

55

Package Description
java.lang Fundamental classes: Object, String, Math, System, wrappers (Integer, Double, etc.).

Automatically imported.
java.util Utility classes: data structures (ArrayList, HashMap, LinkedList), date/time, collections

framework, random number generation.
java.io Input and output: reading/writing files, streams, serialization (File, InputStream,

BufferedReader, etc.).
java.nio Non-blocking I/O: buffers, channels, advanced file and network handling.
java.net Networking support: sockets, URLs, HTTP connections.
java.math Mathematical operations beyond primitives: BigInteger, BigDecimal.
java.text Classes for formatting text, dates, numbers, messages.
java.time Modern date and time API (LocalDate, LocalTime, Duration, etc.).
java.sql Classes and interfaces for accessing relational databases using JDBC.

http://download.oracle.com/javase/1.4.2/docs/api/

10. Core Java Packages

10.1. The java.lang Package
• The java.lang package contains the fundamental classes that form the foundation of the Java

programming language. It includes:
• Object – the root superclass of all Java classes
• Class – runtime representation of class metadata
• Math – utility methods for mathematical operations
• System – access to system resources and I/O streams
• String – immutable text objects
• Thread – support for multithreading
• Wrapper classes for primitive types: Integer, Double, Boolean, Byte, etc.

56

Note : This package is automatically imported in every Java program : there is no need to explicitly

import it.

10. Core Java Packages

10.1.1. The Object Class
Object is the superclass of all Java classes.

Every class implicitly extends Object and inherits its methods.
Common Methods of Object:

a) getClass(): Returns a Class object representing the runtime class of the current object.

Example

57

Person p= new Person("Mohammed","Ali",20);

String className = p.getClass ().getName();

System.out.println(); //Prson

// The displayed result is:
Person

10. Core Java Packages

b) toString(): Returns a String representing the object. By default, it prints the class name followed by
@ and the hashcode (the object’s memory address).

• This method is often overridden to provide more meaningful string representations.

c) equals(Object obj) : Checks whether two references refer to the same object (by default).

• You can override equals() to define logical equality, for example in the String class or custom classes.
58

Person p= new Person(" Mohammed","Ali ");
System.out.println(p.toString()) ;

// The displayed result can be:
Person@190d11

Person p1 = new Person("Mohammed", "Ali");
Person p2 = new Person("Mohammed", "Ali");

System.out.println(p1.equals(p2)); // false
p1 = p2;
System.out.println(p1.equals(p2)); // true

10. Core Java Packages

10.1.2. The class java.lang.String
• In Java, a string is contained in an object of the String class .

• A String variable can be initialized without explicitly calling a constructor.

Example: The following two instructions are identical:

• The + operator allows the concatenation of character strings.

• Comparing two strings must be done using the equals () method which compares
strings, and not the == operator which compares the references of these objects:

59

String s= new String("hello");

String s= "hello";1

2

String s1 = new String("Hello");
String s2 = new String("Hello");
System.out.println (s1 == s2); // prints false
System.out.println (s1.equals(s2)); // print true

10. Core Java Packages

10.1.2. The class java.lang.String
The String class has many methods. Here are some of them:

60

Method Description
length() Returns the number of characters
charAt(int index) Returns the character at a position
substring(int, int) Returns a substring
toLowerCase() Converts to lowercase
toUpperCase() Converts to uppercase
indexOf(String) Finds position of substring
equals(String) Compares contents

10. Core Java Packages

Example :

61

String s = "COMPUTER";

System.out.println(s.length()); // Prints System.out.println(s.charAt(2));
// Prints M
System.out.println(s.startsWith(“COM")); // Prints true
System.out.println(s.endsWith("TER")); // Prints true
System.out.println(s.concat(" AND MATHEMATICAL")); // Displays COMPUTER AND
MATHEMATICAL
System.out.println(s.substring(0,4)); // Prints COMP
System.out.println(s.toLowerCase()); // Displays computer
System.out.println(s.toUpperCase()); // Displays COMPUTER

10. Core Java Packages

10.1.3. The class java.lang.System

• The System class defines three static attributes that allow the use of input/output streams.

• InputStream and PrintStream are classes of the java.io package

• Java.io package defines a set of classes for handling input-output streams.

• print and println methods of the PrintStream class exist for the int , long , float ,
double , boolean , char , and String types .

• The printf () method of the PrintStream class uses the well-known operating mode in the C
language.

62

Attribute Kind Role

in InputStream Standard system input. By default, this is the keyboard.

out PrintStream Standard system output. By default, this is the monitor.

err PrintStream Standard output of system errors. By default, this is the

monitor.

10. Core Java Packages

10.1.3. The class java.lang.System

Example

63

Result displayed:
3.141592653589793
3.14

System.out.println (Math.PI);

System.out.printf ("%.2f",Math.PI);

10. Core Java Packages

10.1.4. The class java.lang .Math
• Contains a series of mathematical methods and attributes.

• Math class is part of the java.lang package , it is automatically imported.

• All methods and attributes of the Math class are static .

• The Math class attributes are:

public static final double PI; //3.14159265358979323846

public static final double E; //2.7182818284590452354

• The Math class defines many mathematical methods:

64

Method Description

Math.abs(x) Absolute value

Math.sqrt(x) Square root

Math.pow(x, y) Exponentiation (xʸ)

Math.max(a, b) Maximum of two values

Math.min(a, b) Minimum of two values

Math.round(x) Rounds to nearest integer

Math.random() Generates a random double in [0,1)

10. Core Java Packages

10.1.4. The class java.lang .Math

65

double radius = 5;
double area = Math.PI * Math.pow(radius, 2);
System.out.println("Area of circle: " + area);

10. Core Java Packages

10.2. The java.util Package
• The java.util package provides utility classes for everyday programming tasks, including:

• Date and calendar management (Date, Calendar, LocalDate)
• Random number generation (Random)
• Collections (ArrayList, LinkedList, HashMap, HashSet, etc.)
• Scanner for reading input

• Common Classes in java.util :

66

Class/Interface Description
ArrayList Resizable array (like a dynamic array)
LinkedList Doubly linked list implementation
HashSet Collection that doesn't allow duplicates
HashMap Stores key-value pairs (like a dictionary)
Scanner Reads input from the user (keyboard, file...)
Collections Utility class for collection operations (e.g., sort, shuffle)
Arrays Utility class for array operations
Random Used to generate random numbers
Date / Calendar Used for date/time handling (deprecated in favor of java.time)
Stack, Queue Data structure interfaces and classes
Iterator / ListIterator Used to loop through collections
Optional Container to avoid null values (Java 8+)
Objects Helper class with null-safe methods (e.g., Objects.equals())

10. Core Java Packages

10.2. The java.util Package

Scanner Class : The Scanner class is commonly used to read input from the keyboard:

67

import java.util.Scanner;

public class MyClass {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

System.out.println("Please enter a word:");
String str = sc.next();
System.out.println("You entered: " + str);

System.out.println("Please enter an integer:");
int a = sc.nextInt();
System.out.println("You entered: " + a);

System.out.println("Please enter a double:");
double x = sc.nextDouble();
System.out.println("You entered: " + x);

}
}

