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Chapiter 1: Mathematics Revision

1. Introduction: Mathematics Revision

This lesson provides a mathematical revision covering fundamental concepts essential for
physics and engineering applications. We will review the elements of length, surface area,
and volume in different coordinate systems, as well as important mathematical operators
and calculus techniques.

2. Elements of Length, Surface Area, and Volume in Differ-
ent Coordinate Systems

We will analyze the fundamental differential elements in the three primary coordinate
systems: Cartesian, cylindrical, and spherical. Understanding these elements is crucial for
evaluating integrals in physics and engineering.

2.1 Cartesian Coordinate System

A Cartesian coordinate system is defined by an origin point O and three mutually per-
pendicular axes (Ox,0y,0z). The unit vectors along these axes are i,j,k. Any point M in
space is represented by the position vector:

ﬁzwzxi+yj+zk

/ dx

- dz | :

A J

Sy rd y

L X

Cartesian basis (a) Position vector and (b) elementary displacement and volume



Example: Consider a straight-line motion along the x-axis where x = 2¢, y =3, and z =0.
The velocity vector is given by:

dR d
V= E = a(zti+3j+0k):2i
Differential Length Element: The differential displacement is given by:

dOM =d 1 =dxi+dyj+dzk

Differential Surface Element: The surface element depends on the plane of integra-
tion:
dSy=dydz, dS,=dxdz, dS,=dxdy

Differential Volume Element: The elementary volume is given by:
dV =dxdydz

2.1.1 Cylindrical Coordinate System

In the cylindrical coordinate system (r,0,z), a point is represented as:

x=rcosf, y=rsinf, z=z

It should also be noted that we can write:
u, =cosfi+sin0j

and derive this vector with respect to 6:

We obtain:
du, =d0(-sinfi+cosbj),
knowing that:
cos (9 + z) =—sinf and sin (9 + E) = cos#f.
2 2
Thus:
du, ) . b/ .
0 can be obtained by rotating wu, by an angle of 3 and we can write:
du,
do v

The position vector DM is written as:

DM = pu,, + zk = (xi + yj) + 2k,



Cylindrical base

where x and y are the Cartesian coordinates of the point M in the Oxy plane, given by:
x=pcosf, y=psinf, and z==z.
The expression for the elementary displacement is:
dDM=dpu, +pdOug+dzk.
The expression for the elementary surface is:

ds=pdpdb.

Example: Find the velocity vector for a particle moving in a circular path where r = 2,
0 =t2, and z = 4¢. The velocity components are:

dr deo dz
v,_%_o, vg—ra—2(2t), UZ_E_LL

Thus, the velocity vector is:
v =0e, +4teg +4e,

Differential Length Element:

d1 =dre,+rdfey+dze,



bl rd 6

dM

v

Cylindrical coordinates

Differential Surface Element:

dS,=rd0dz, dSg=drdz, dS,=rdrd0

Differential Volume Element:

dV =rdrdfdz

2.2 Spherical Coordinate System
In the spherical coordinate system (r,0,¢), a point is represented as:

x=rsinfcos¢p, y=rsinfsingp, z=rcosfd

The position vector of point M in spherical coordinates, meaning in the spherical basis, is
written as:

OTizruszi+yj+zk.

From the figure, we can express x,y,z in terms of r,0, ¢:

X =0Mcos@ =rsinfcos,
Y =OMsing =rsinfsing,

Z =0OM cosB =rcos0.

Thus, we deduce:

u, =sinfcos@i+sinfsingj+ cosOk.



The unit vector Tw at OM is written as:

u_’q, =cos @i+ sin@j.
This vector u_(;, can be obtained either by replacing ¢ with ¢ + 27 or by differentiating
u, with respect to ¢:
U, = —singi+cos@j.
This basis vector can also be expressed as the derivative of u, with respect to ¢:

- 1 ou,
Ug

~ sin@ op
The third basis vector in the spherical coordinate system is given by:

—_—
—, Ou,

ug = 60

2.2.1 Elementary Displacement:

—_

dM =dGi) =dris +rdi. +r£d9 s

o

do.

=dru, +rd0ug + r(sinfd ¢)u,.

2.2.2 Elementary Surface and Volume:

dS =r?sin0dOde.
dV =r?sinfdrd6de.

Example: Find the length of an infinitesimal arc in spherical coordinates for a small
change in 6 while keeping r and ¢ constant.

dl=rd0o

Differential Length Element:

d7 = drey +rdfey +rsinfdgey

Differential Surface Element:

dS,=r%sin0d0d¢, dSp=rsinddrd¢, dSs=rdrdd

10



elementary volumes in spherical coordinates

Differential Volume Element:

dV =r?sin0drdfd¢

11



2.2.3 Transformational relationships between different coordinates

From

To

Transformation Equations

Cartesian(x, y,z)

Spherical(r,8, ¢)

r= \/xz +y2+22
z

0= arccos(—)
r

¢ = arctan2(y,x)

Spherical(r, 8, ¢)

Cartesian(x, y, z)

x =rsinfcos¢

y=rsinfsing

z=rcosf
p=y/x2+y?
Cartesian(x,y,z) | Cylindrical(p,,z) ¢ = arctan2(y, x)
z=z
X =pCoS
Cylindrical(p,¢,z) | Cartesian(x,y,z) y=psing
z=z
p=rsin0
Spherical(r,8,¢) | Cylindrical(p,,z) p=¢
z =rcosf

Cylindrical(p, ¢, 2)

Spherical(r,8, ¢)

r:\/p2+22

6 = arctan (g)
=9

2.2.4 Solid Angles

A solid angle d(2 in spherical coordinates is given by:

dQ) =sin6d0d¢p

The total solid angle in three-dimensional space is:

3.

2n pn
Q= f f sin0dOd¢ = 4n
0 0

Operators in Vector Calculus

Example: Compute the gradient of the scalar function f(x,y,z) = x2 + y2 + z2:

Vi =(2x,2y,2z)

12
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Example: Compute the divergence of the vector field A = (x2, y2,22):

0 0 0
VA= —@2)+—0H)+—(E>=2x+2y+2z
0x oy 0z

These examples reinforce the mathematical concepts necessary for physics applications.

3.1 Applications:
3.1.1 Calculate the perimeter of a circle C with radius R (simple integral).

Solution:
We have dl = R d6, hence:

2m
C= RdO =2nR.
0

3.1.2 Calculate the area of a disk D with radius R (double surface integral).

We use the differential surface element dS =dp p df, hence:

Solution:
R p271
szf dpd@zf [ pdpdo.
S o Jo

Evaluating the integral:

2r R R2
D:f d@f pdp =21 x — =R
0 0 2

13
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R'dR'
E{ =Ra2n: T Laan /
) (22 +R7) /
E. =kodn| 1o i | 7/
. _ '\ICJ+RJi| / F = area charge
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k= = Caulomib'’s - = T B
4me, constant (f O r 3 %
— e == -
Area of a disk

3.1.3 Calculate the volume of a cylinder V with radius R and height H (triple
volume integral).

We use the differential volume element dV =dp pd08dz, hence:

Solution:
R 21 H
V:fff ddedz:f pdpf d@f dz.
1% 0 0 0

Evaluating the integral:
H 2r R
V= f dz f do f pdp.
0 0 0

14



V=nr’xh

Figure 9: Volume of a cylinder

R2
V=H><27'[><7=7[R2H.

3.14 Calculate the surface area of a hemisphere D with radius R (excluding
the horizontal disk) (double surface integral).

SURFACE AREA OF A HEMISPHERE @Y

Area = mr®
Figure 10: Surface area of a hemisphere

We use the differential surface element dS = R?sin6d6 d ¢, hence:
Solution:

D= ff R?sin0d0d¢.
N

Evaluating the integral:

D=R f s1n0d6 d(,b

15



D = R2%(~cosf Z) « (27) = R2(1+1) x 27 = 27R>.

3.1.5 Calculate the volume of a sphere V with radius R (triple volume integral)

z
FSing JhGA, 18
"é‘*f’de‘ L\ rsing do
Lt
/A, 5 Y
S e
l'/.}/

Volume of a sphere

We use the differential volume element dV = r?sinfdrdf d¢, hence:

Solution:
V:fff r2sin0drdode.
14

Evaluating the integral:

V= frdrf sdeH d¢7
R3
Vz( 3 )X( cos@| ) x 271,

R3 R3 4
V=" x(1+1)x21=— x2x 21 = —nR5.
3 3 3

16



Chapter II: Electrostatics

4. Elementary Electric Charges

The electrical properties of matter originate at the atomic level. Matter is composed
of atoms, each consisting of a nucleus around which a cloud of electrons orbits. These
electrons repel each other but remain positioned around the nucleus. The nucleus consists
of protons, which carry positive charges, and neutrons, which are neutral. The set of
particles forming the nucleus is called nucleons.

Electrons and protons carry the same electric charge in absolute value, denoted by e.
This electric charge, known as the elementary charge, has a value of:

e=1.602x10"°C 4.1)

The electric force acting between positively charged protons and negatively charged
electrons is responsible for the cohesion of atoms and molecules. The total charge of
non-ionized atoms (i.e., those that have neither lost nor gained electrons) is zero.

An electric charge cannot take arbitrary values; it is always an integer multiple of the
elementary charge:

Q=+ne (C) (4.2)

This expresses the fundamental principle of charge quantization.

5. Electrification Experiment

When a glass rod is rubbed with a piece of silk and brought close to small pieces of paper,
the paper pieces are attracted to the rod, indicating that electrons have been removed from
the rod.

5.0.1 First Experiment

A small ball made of elderberry wood or polystyrene is suspended by a thread. A glass or
amber rod, previously rubbed, is brought near the ball. Each rod first attracts and then
repels the ball after contact (Figure 2.1a). However, if both rods are brought close to the
ball simultaneously, nothing happens (Figure 2.1b).

5.0.2 Second Experiment

If two balls are electrified by contact with a rubbed glass rod, they repel each other.
However, if each ball has touched different rubbed rods made of different materials, they
attract each other.

These experiments demonstrate the existence of two states of electrification, corre-
sponding to two types of electric charges: positive and negative. We recall the fundamental
rule:

17
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Electrification experience

Two bodies with the same type of charge repel each other, while bodies with
opposite charges attract each other.

6. Coulomb’s Law

Consider two point charges g1 and g9 placed in a vacuum. The first exerts a force propor-
tional to q1 on the second, and vice versa. The force between the two charges, known as
electrostatic force, is proportional to the product of their charges:

F.-k 12y, (6.3)
r

where r is the distance between the two charges, and K is given by:

18



1

= , with €p=8.854x10"2 F/m (6.4)
4me

Application: Calculate the force exerted by charge g1 =3 x 1072 C on charge g2 =
—5x 107* C separated by a distance of 20 mm.
Solution:

3x1073)(-5x 1074
9192 _ g, 109 Bx10 (5> 107) (6.5)

F=K
r2 (20 x 1073)2

F=33.75x10° N (6.6)

7. Superposition Principle

Consider a charge g at point M in the presence of other charges q; located at points M;.
The force F acting on charge q is:

F=) K25 Uin (7.7)
t i

Application: Compute the resultant force acting on q3 due to g1 and qs.

8. Electrostatic Field

An electric field exists at a point in space if a test charge gg at that point experiences an
electrostatic force Fe such that:

F
E==—2 (8.8)
q0

8.1 Electric Field of a Point Charge

A charge @ at point O creates an electric field at any point M given by:

K
EM)= r_QQUOM 8.9)

9. Electrostatic Potential

9.1 Electric Potential

The work required to move a charge g from point A to point B in an electric field is:

B
Wag =q0f E-dl (9.10)
A

The electric potential difference is defined as:

19



B
UAB:VB_VA:_f E-dl 9.11)
A

9.2 Potential of a Point Charge

For a charge @ at point O, the electric potential at a distance r is:

Vng (9.12)

assuming V =0 at infinity.

10. Electrostatic Potential of continuous charge distribution

The potential at a distance r from a charge ¢ is given by:

V(r)= I% (10.13)

The potential remains constant on spheres of radius r centered around the charge q,
which are called equipotential surfaces.
10.1 Potential Created by Multiple Distinct Point Charges

We start from the relationship between the electric field E and the potential V, more
precisely from the differential relation:

dV =EWM)-dl

For a set of charges g;, concentrated at point M, and using the superposition theorem:
— N - N -, N
dV=-EM)-dl=- Z[Ei(M)]-dl = Z[—Ei(M)]-dl = ZdVi
i=1 i=1 i=1

The sum of a set of differentials being the differential of the sum:
N N
dv=> dv; :d(ZVi)
i=1 i=1
VM) = ﬁv- __1 s (10.14)
S Ameo S .

Where r; is the distance between ¢; and point M. The charge ¢; can be positive or
negative, which is why it must be taken with its sign.

20



Proof. Using the relationship between the electric field E and potential V', we obtain:

Kq;

ri

V(M) = Z

(10.15)

where r; is the distance between charge q; and point M. The charges q; can be positive

or negative.

10.2 Potential Due to a Continuous Charge Distribution

For a continuous charge distribution, integration is used:

V(M):deTq

10.2.1 Volume Distribution

V(M)=Kfff@

where p is the volume charge density.

10.2.2 Surface Distribution

won -

where o is the surface charge density.

10.2.3 Linear Distribution
Adl

r

V(M):Kf

where A is the linear charge density.

O

(10.16)

(10.17)

(10.18)

(10.19)

Here is the combined and corrected translation of the text from the images into English,

rewritten in LaTeX:

**¢) If the distribution is linear:**

Adl

ViM)=| —— UII-26)

c 4negr

where A is the linear charge density.

21



10.3 Applications:
10.3.1 Field and Potential Created by a Ring:

A ring with center O and radius R carries a charge ¢ uniformly distributed with a linear
charge density 1 > 0.

1. Calculate the potential created at point M on the axis Oy located at a distance y
from O. 2. Deduce the electric field vector at point M.

10.3.2 Solution:

For the given point M, the quantities r, y, and R are constant. Starting from Figure 1.8

. _ 1 . .
and setting K = Tneg» We can write:

d
dav =4
r

Integrating over the entire charge distribution:

K K
de:—qu:V:—q+Coo
r r

From the figure, we can see that:

r=1/R2+y2

After substituting K and ¢ = 1-27R, we arrive at the expression:

A R

——+C
20 JRZ+y2

Now, to determine the magnitude of the electric field E, we differentiate the expression
for V with respect to y, using the relation:

. -~ AR y
F--YL gt Y g
dy 2e0 (R? +y2)3/2u

10.3.3 Field and Potential Created by a Disk:

Consider a disk with center O and radius R, uniformly charged on its surface. The surface
charge density is o (g > 0) Figure 14.

1. Calculate the electric field and the potential created by this distribution at a point
M on the axis (Oz).

To do this, we decompose the disk into rings of radius p and width dp. Let P be a point
on the ring and P’ the symmetric point of P with respect to O.

First, let’s examine the symmetry of the problem: the distribution has a revolution
symmetry around the axis OZ. Any plane containing the axis OZ is a plane of even
symmetry for the distribution. Therefore, the electric field E at a point M on the axis 0Z
is directed along E:

22



E =keoln: KdR

b (ZrE)"

E. = ko2m|1 - —mee | T/
"+ R

I s

Coulamis " ——

i, e (R O_r oS

k=

Potential Created by a Disk

E(M)=E(0,0,Z)=E(Z)k

A charge element dg = o ds, centered at P (Figure II-9), creates at a point M on the
axis of the disk an elementary field dE given by:

where ds=pdpdf and r = \/p? + Z2.
The charged disk has a revolution symmetry around its axis, for example, the axis ZZ,

so the field is directed along this axis. We have:

o o pdpd@
47eq p2 ke

- o dpdo >
dEz =dEcosa = p p2 cosak
dmey p2+2Z2

The total electric field at point M is obtained by integrating over the entire disk:

EM)=

R 21
7 f pdpdo cosa
0 Jo

47eq p2+272

Since cosa = %, we have:

27 bdpdo VA
EM) = ff SN
4meg p2+Z p +Z2
Ean =2 (Z z )zz
2e0 \|Z| VR2+2Z2

When Z is large, the field weakens. However, when R > Z, and M is very close to the
disk, the field becomes:

EM)=+"F
260

23



The potential at point M is derived from the field by integration:

av -

EM)=-VV(M) = —d—Zk

Thus,

2 (2- VR 7

- 260

11. Electrostatic Energy

11.1 Energy of a Point Charge in an Electric Field

The work done to move a charge ¢ from A to B in an electric field E is:
Wap =q(Va—Vp) (11.20)

11.2 Energy of a System of Point Charges

The total electrostatic energy W of a system of point charges is given by:

1
W= EZqui (11.21)
i

11.3 Energy of a Continuous Charge Distribution

W = %ff[deV (11.22)

12. Electric Dipole

12.1 Definition

An electric dipole consists of two equal and opposite charges separated by a small distance.
The dipole moment p is given by:

P=qa (12.23)

12.2 Potential Created by a Dipole
The potential at a point P due to a dipole is:

V= Kp;zosg (12.24)
r

24
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Electric Field of a Dipole

12.3 Electric Field of a Dipole
The radial and angular components of the electric field are:

_ Kp(2cos0)

E, - (12.25)
r
Kpsind
Eg= —p:;n (12.26)

13. Gauss’s Theorem

13.0.1 Objectives:

To be able to quickly provide the expression for the electrostatic field created by a source
with a high degree of symmetry.

13.1 Prerequisites:

By drawing two networks of lines on any surface, the surface is decomposed into smaller
areas bounded by these lines (see the figure).

If the lines are very numerous and evenly distributed, each of these areas has a very
small surface. Consider a point P on the surface S. If the number of lines increases
indefinitely, the small area around the point P decreases and tends to approach the portion
of the tangent plane at P to the surface S. In the limit, its area d.S becomes infinitely small
and coincides with a portion of the plane. It is called the surface element surrounding the

25



Gauss’s Theorem

point P. Thus, any surface S can be considered as the juxtaposition of an infinite number
of surface elements dS.

13.2 Surface Element:

Consider a surface element of area dS.

We associate with this element a vector called the "normal" vector dS , defined as
follows:

- Its origin is a point P on the element. - Its direction is normal to the surface. - Its
magnitude is equal to the area dS.

The vector dS is therefore infinitely small. Its orientation is chosen arbitrarily (outward
for closed surfaces). To orient dTS, one can also use the "corkscrew" rule. The contour C
bounding the surface is oriented by arbitrarily choosing a positive direction of traversal.
The vector dS is oriented according to the progression of a corkscrew turning in the
direction of C.

13.3 Gauss’s Theorem:

Gauss’s theorem relies on the concept of the flux of a vector. This new concept is introduced
in what follows. However, a good mastery of elementary vector operations, particularly the
dot product, is necessary.

14. Concept of Flux

Let E denote the electric field vector at point P. Let dS be the surface element surrounding
this point and the corresponding vector.
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Concept of Flux

14.1 Definition:

By definition, the flux d® of the electric field E through the considered surface element
dS is equal to the dot product:

d®=E-dS

This is called the elementary flux to indicate that it is relative to a surface element.

14.2 Sign of the Flux:

The sign of the flux depends on the direction of the vector dS. Consider, for example, the
two opposite vectors dS and —dS, associated with a surface element.

If the vector dS makes an angle 6 with the electric field E, the vector —dS makes
an angle 7 — 6, and since cos(7 — ) = —cos(6), the dot products E-dS and E -(-dS) have
opposite values.

To calculate the algebraic flux of the electric field E through a surface element dS , it is
therefore necessary to choose, in accordance with the concept of positive flux, the direction
of the vector dS associated with this element.

The flux of an electric field E through a closed surface S is given by:

Qenc
€0
where Qcn is the total charge enclosed by the surface.

(D:fE,dS: (14.27)

14.3 Flux Calculation

Consider the surface elements composing the surface S. For each of them, the elementary
flux d® is calculated. The total flux ® of the electric field through the surface S is obtained
by summing the elementary fluxes. This sum is conventionally denoted by the notation:

@:ffﬁ]-d§
S
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To perform this calculation, the vectors dS associated with the surface elements are
all oriented on the same side of the surface S.

14.4 Flux of a Point Charge

Let P be a point belonging to the surface element dS. The field E created at P by the
charge q is directed along 7 and oriented from g to P if ¢ > 0; its magnitude is:

1 g¢q

E=
4meqg r?

where r is the distance between g and P.
The elementary flux of this electric field through the surface element dS surrounding
the point P is:

d®=FE-dS =EdS cosf

where 6 is the angle between E and dS.

However, dQ = % is the solid angle d() subtended by the contour of dS as seen

from g (geometrically, it is a cone with vertex at q that is tangent to the surface element
ds).

Gauss’s Theorem

Gauss’s theorem is stated as follows:

14.5 Theorem:

The flux of the electric field through any closed surface S is equal to % times the total
algebraic charge contained within the volume bounded by this surface:

Qint

@:f}?-d§:
S €0

14.5.1 Case of Charges Outside a Closed Surface S:

The elements d.S 1 and d§2 are seen under the same solid angle d{) in absolute value.
However, E 1 and dS 1 are collinear, while Eg and dS 9 are opposite. Therefore, the fluxes
d®; and d®9 have opposite signs. The elementary fluxes cancel out in pairs, and the total
flux of the field E created by the charge g outside the closed surface is zero.

14.5.2 Case of Charges Inside a Closed Surface S:

The sum of the elementary fluxes will not be zero because all the surface element vectors
are, for example, all oriented outward from the surface. The total flux sent by g through S
will be the sum of the elementary fluxes:
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Case of Charges Inside a Closed Surface

®= yf E.aS=2L
S €0
The unit of solid angle is the angle that subtends a unit area on a sphere of unit radius.
Since the surface area of a unit sphere is 4, the solid angle that subtends the entire space
from a point is 47. The sum extends over the entire space, i.e., 47.

If there are N charges q; inside S:

1N

Y qi

@:fé.m:
S €0,-1

By defining:

N
Qint = Z qi
i=1

The flux of E through a closed surface is equal to % times the sum of the interior
charges, regardless of the exterior charges.

14.6 Application of Gauss’s Theorem:

The application of Gauss’s theorem is very useful in problems that exhibit a high degree of
symmetry. Verify this property with the simple example of the field E created by a point
charge q.

The following two simulations will allow you to apply Gauss’s theorem in the case of two
uniformly charged structures with axes of symmetry. You can demonstrate the simplicity
with which Gauss’s theorem allows the calculation of the electrostatic field created by these
two charge distributions, which exhibit a high degree of symmetry.

14.7 Methodology

Gauss’s theorem is a valuable tool for determining the electric field E at any point P when
the source charges exhibit high symmetry. The steps for calculating E are as follows:
1. Determine the orientation of the field using symmetry considerations.
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2. Choose a "Gaussian surface" S (imaginary, with no physical reality): - Passing
through the point of interest P. - Most suitable for simplifying the expression of the flux of
E through it. - Possessing the same symmetry properties as the source. - Not coinciding
with a charged material surface.

3. Express the flux @ through the closed surface S.

4. Determine the total charge Qint enclosed within the volume bounded by S.

5. Apply Gauss’s theorem:

Qint

€0

cp:fé.dg:
S

If the Gaussian surface is well chosen, the left-hand side of the equation is a simple
function of E and the distance r. Thus, the expression for the field E can be obtained as a
function of the distance r and the source charges.

14.7.1 Case of axial symmetry

A source charge distribution has axial symmetry if the charge density at a point is a
function only of the distance from an axis.
Cylindrical Charge Cloud with Volume Density p = f(r):

Case of axial symmetry

1. By symmetry, the electric field is radial (far from the edges of the source).

2. The most suitable Gaussian surface is a cylinder aligned with A and passing through
the point of interest M (which can be inside or outside the source).

Point of Interest Outside the Source:

On the right sections S of the Gaussian cylinder Sg, the vectors E and dS are orthogo-
nal, so the flux of E through S is zero. The flux of E through the closed Gaussian surface
is reduced to the flux through the lateral surface.

cp:ff E‘-d§:/ E.d§+ffﬁ.d§:f F-d§
Sg Slat S Slat

On the lateral surface, E and dS are collinear, so the flux reduces to:
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q):ff E‘-d§=[ E-dS
Slat Slat

E is the same at every point on S, and can therefore be taken out of the integral:

d):ff E-dS=E dS =ESia
Slat Slat

The lateral surface area of the Gaussian surface is equal to 27rh:

O=FE 2arh

Now, we only need to evaluate the charge @; inside the volume delimited by S,
according to the considered distribution. Gauss’s theorem allows us to determine the field
E by writing:

Qi

O=F -2nrh=—
€0
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15. Capacitance

The capacitance C of a conductor is defined as the ratio of the charge @ stored on the
conductor to the electric potential V of the conductor:

Q
C==
\%

The unit of capacitance is the farad (F), where 1F = 1C/V (one farad equals one coulomb

per volt).

Plate
area A

Electric
field E

PEE SR SRS AN SN B SR SRR NS S S S
- . W R S S S W S S S

———

v Plate separationd *

e e o e o e e o e

The Capacitance

_9Q
C= % (15.28)

For a few common conductor geometries, the capacitance is given by:

1. Isolated Spherical Conductor of Radius R:
C=4neggR
where € is the permittivity of free space.

2. Parallel Plate Capacitor with Plate Area A and Plate Separation d:

<A
- d

where € = g¢¢, is the permittivity of the dielectric medium.

C

3. Cylindrical Capacitor with Inner Radius R, Outer Radius Rg, and Length L:

B 2mel
" In(Ry9/R1)
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The capacitance C of a conductor is defined as:
For a spherical conductor:

Spherical conductor

C=4n €0R
For a cylindrical capacitor:

Gaussian surface

——

et e

r
+ 4] _
I \+ +
/4_’ S |

/+;\\_’+ + + + + +y

Cylindrical capacitor

2megh

" In(Ry/R1)
For a parallel plate capacitor:

15.1 Energy Stored in a Capacitor

The energy stored in a capacitor is given by:
1
W=—-CV?
2
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16. Chapter 3 "Electrokinetics"

Electrokinetics is the study of electric currents, that is, the study of the movement of
electric charges in material mediums called conductors. In other words, it is the study of
electric circuits and networks.

17. Electric Conductor

In electricity, a conductor is a material that contains electric charge carriers that can
move easily. When this conductor is subjected to an electric field, the movement of charge
carriers becomes globally ordered, which results in the observation of an electric current.

By extension, a conductor is an electrical or electronic component with low resistance,
used to carry current from one point to another.

Among the conductive materials, we can mention metals, electrolytes (or ionic solu-
tions), and plasmas.

Perfect conductors do not exist, so ohmic conductors are used, among which the best
are silver, gold, and aluminum.

18. Electric Current

18.1 Definition

Electric current is a collective and organized displacement of charge carriers (electrons or
ions). This flow of charges can occur in a vacuum (electron beams in cathode ray tubes...),
or in a conductive material (electrons in metals, or ions in electrolytes). An electric current
appears in a conductor when a potential difference is established between its terminals.

18.2 Intensity of Electric Current

The intensity of the electric current is a number describing the rate of flow of electric
charge across a given surface, notably the cross-section of an electrical wire.

dq(t)

1) = 57

(I1I-1)
Where:

¢ [ is the intensity of the current.

* ¢ is the electric charge.

¢ ¢ is the time.

In the International System of Units, the intensity of the current is measured in
amperes, a base unit whose normalized symbol is A. An ampere corresponds to a charge
flow of one coulomb per second.
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The intensity is measured using an ammeter which must be connected in series in the
circuit.

18.3 Current Density

Current density is a vector describing the electric current at a local scale. Its direction
indicates that of the displacement of charge carriers (but its sense can be opposite for
negative charge carriers) and its norm corresponds to the intensity of the current per unit
area. It is related to the electric current by:

I= ff j-dS  (11-2)
S

Where:

¢ [ is the intensity of the current.

* S is a surface.

. j is the current density.

e dS is the elementary surface vector.

In the International System of Units, the current density is measured in amperes per
square meter (A-m~2).

19. Ohm’s Law

The potential difference or voltage U (in volts) across the terminals of a resistor R (in
ohms) is proportional to the intensity of the electric current I (in amperes) that flows
through it (Figure III-1).

U=R-1 (I11-3)

The resistance is the opposition exerted by a body to the passage of an electric current.
The resistance is measured in ohms.

20. Joule Effect

The Joule effect is a heat production effect that occurs when an electric current passes
through a conductor exhibiting resistance. It manifests as an increase in the thermal
energy of the conductor and its temperature. In effect, this type of conductor transforms
electrical energy into heat energy (energy dissipated as heat). The power dissipated by
this conductor is equal to:

P=RI?> (IlI-4)
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Figure II1.1 Resistor traversed by a current I under a voltage U

The unit of power is the watt (W).

R: the resistance of the conductor.

I: the intensity of the current that flows through the conductor.

From the definition of energy, we deduce that the energy consumed by a resistance
during time ¢ is equal to:

2
E=UIt=R.I’= %t (I11-5)

The unit of energy is the joule (J).

21. Grouping of Resistors
We distinguish two cases for the grouping of resistors:

21.1 Series Grouping

All resistors R; are traversed by the same electric current I, and each of them has only one
common end with another resistor (Figure II1-2). The voltage Uap = U is equal to the sum
of the voltages across the resistors.

U=U1+Us+Usz+---+U,=R.I (I11-6)

U=RyI+Rgo.I+R3I+---+R,.I=R.I (I1I-7)

Thus, we obtain the equivalent resistance of all the resistors grouped in series.

R=Y R; (I8)

Me

1

12
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resistors_series.png

Figure III-2 Series Grouping of Resistors

21.2 Parallel Grouping

This grouping is characterized by the fact that all the resistors have their terminals
connected two by two (Figure III-3). The voltage is the same across the terminals of any
resistor R;.

The electric current that supplies the portion of the circuit is divided between the
resistors, such that:

I=11+Is+1I3+---+1, (I11-9)

u U U U U 1 1 1 1 1
- =+ — 4 —+ -t —— —=|—+—+—+--+—|-U III-10
R Ry Ry R3 R, R |R1 Ry Rs R, ( )

Thus, we obtain the equivalent resistance, in this case, which is always smaller than
that of the smallest of the resistors connected in parallel.
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Figure III-3 Parallel Grouping of Resistors

1 1 1 1 1 1 no1
R R1 R2 R3 Rn R '1Ri

1=

(I1I-11)

22. Electric Circuits

An electric circuit is a set of conductors (wires) and electrical (sockets, switches, ...) or

electronic components (household appliances, ...) through which an electric current flows.
The electrokinetic study of an electric circuit consists of determining, at each point, the

intensity of the current and the voltage.

23. Elements of an Electric Circuit

The electric circuit is composed essentially of the following elements (Figure I11-4):

1. The node: is a point where two or more conductors meet.
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2. The branch: is a portion of the circuit that is located between two nodes.

3. The mesh: is any closed loop, formed by a sequence of branches.

circuit_example.png

Figure II1-4 A general electric circuit

24. Generators

To obtain a continuous electric current in a closed circuit, it is essential to supply the
circuit with energy. This is done by devices called generators. We can say that they are
sources of electromotive forces to transport the charges.

Two types of generators are distinguished:

24.1 Generators or voltage sources

The voltage source, or voltage generator, is a dipole characterized by a constant voltage
between its terminals, whatever the variable intensity it delivers. In what follows, we

39



will be particularly interested in continuous voltage generators. This type of generator is
characterized by an electromotive force e, and a low internal resistance r (Figure III-5).
It is possible to replace a voltage generator, whose characteristics are (e,r), with an
ideal source, of electromotive force e, connected in series with an ohmic conductor, of
resistance r as indicated in Figure III-5.
The electromotive force of a voltage generator is equal to the potential difference
between its terminals when it does not deliver any current:

I=0—e=Uppp

voltage_generator.png

Figure III-5: Representation of the voltage generator

24.2 Generators or current sources

The current source, or current generator, is a dipole characterized by the delivery of a
constant current, whatever the variable potential difference between its terminals. In
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what follows, we will be essentially interested in continuous current generators. This type
of generator is represented by the scheme of Figure III-6.

We can replace a current generator with an ideal current source, which delivers a
constant current, and connected in parallel with an ohmic conductor, of resistance, as
indicated in Figure III-6.

current_generator.png

Figure II1-6: Representation of the current generator

25. Kirchhoff’s Laws

25.1 First Law (Node Law)

At a node in a circuit, the sum of the currents entering is equal to the sum of the currents
leaving:

YI.=)1, (I-12)
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This means that the charges do not accumulate, they flow at a node in the circuit, they
obey the law of conservation of energy.

25.2 Second Law (Mesh Law)

In a mesh of an electric circuit, the algebraic sum of the products of resistance by the
intensity of the current (ZZZIR xI%) is equal to the algebraic sum of the electromotive
forces (Zzzl ep).

n n
Y er=) Rpl,  (II-13)
k=1 k=1

When applying this law, one must choose a positive sense around the mesh: all electro-
motive forces and currents that have the same sense will be counted positively, those that
are of opposite sense will be counted negatively. We consider the sense of e positive when
we enter, after the positive pole, by the negative pole and leave by the positive pole (which
results in an increase of potential), and the opposite in the contrary case.

26. Applications

Consider, for example, the following circuit (Figure II1-7):

iy AV L0859

ov,0s5a T TIY,050

Electric circuit

We are looking for the values of the three currents 11, I9, and I3, using Kirchhoff’s
laws. The conservation of current (first law of Kirchhoff) implies that 11 =I5+ I3.

We then apply the potential conservation on the mesh of the circuit (second law of
Kirchhoff) to the meshes ABEFA and BCDEB.

For the Mesh ABEFA:
Starting from point A where the potential V4 exists:

1. From A to B, a resistance of 2.5( is traversed in the direction of the current i;, which
corresponds to a potential drop of 2.5i1 Volts.

2. From B to E,
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ik TT3V,050
10V, 5,
05T 150
F i E
Mesh ABEFA

(a) We traverse a battery of E = 3 Volts from the highest potential to the lowest
potential, which results in a potential drop of 3 Volts.

(b) The internal resistance of the battery is traversed in the direction of the current
i3, which corresponds to a potential drop of 0.5i3 Volts.

(c) Finally, the resistance of 1.5 is also traversed in the direction of the current
i3, which leads to a potential drop of 1.5i3 Volts.

3. From E to F, there is no potential variation.
4. From F to A,

(a) The battery of E = 10 Volts is traversed from the lowest potential to the highest
potential, raising the latter by 10 Volts.

(b) On the other hand, the traversal of the internal resistance of this battery in the
direction of the current i; causes a potential drop of 0.5i1 Volts.

In total, we have done after one complete turn:

Va—-25i1-3-0.5i3-1.5i3+10-0.5i1 =V4

and therefore

Uapa=Va-Va=-25i1-3-05i3-1.5i3+10-0.5i;=0

For the mesh BCDEB:
Starting from point B where the potential Vg exists:

1. From B to D,
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mesh BCDEB

(a) There is a loss of 1 Volt across the battery.
(b) And a loss of 0.5i2 Volt across the internal resistance of this battery.

2. From D to E, there is a loss of 1.5i9 Volt.
3. From E to B,

(a) There is a gain of 1.5i3 Volt.
(b) A gain of 0.5i3 Volt across the internal resistance of the 3 Volt battery.
(¢) And a gain of 3 Volts due to the electromotive force of the battery.

In total, we have done after one complete turn:

Vg —1-0.5i9—1.5i9+ 1.5i3 +O.5i3 +3=Vp

and therefore

Upp=Vp—-Vp=-1-0.5ig—-1.5i9+1.5i3+0.5i3+3=0

We obtain the following system of equations:

I1=19+ i3
-2.511-3-0.5i3—-1.513+10-0.51; =0
—-1-0.5i9—1.5i2+1.513+0.5i3+3=0

Or even:

i1=1i9+13
—-3i1—2i3+7=0
—2i9+2i3+2=0
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This is a system of 3 equations with 3 unknowns: i1, i9, and ig.
The resolution of this system gives:

i1=2A
ig=15A
i3=05A

The positive values of these currents indicate that the senses chosen at the beginning
are correct.
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Iy ir(?) ir(8)
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26.1 Section 2

Assuming steady state yields constant! current, therefore
ZSR: i =1 (26.33)
Proof. Solving ZIR of the equation (??) :

—t
irzIr(t) = AeXp(7) (26.34)

lim ir,(¢)= lim (iz z1r +irzsr) =iLzsr = 1o
t—o0o t—o0

26.2 Section 3

Summarizing equation (26.33) with (26.34) and activating given initial condition i7,(f =

0) = 2 A results in final solution i7,(¢), where 7 = 5_35

iL(t)=I0+(2—IO)exp(_7t) ,t>0
27. Question 2 Solution

27.1 Section1

Consider circuit on Figure 34b. Now? applying current divider technique one could easily
calculate the following currents:

IResistor Shortened by Inductor
2Inductor is Short
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40 2k
" 500+2k[16k 500+ 2k]|6k

i1

B 40 6k
"~ 500+ 2k||6k 500+ 2|6k

io

11(07) =20mA i2(07) = 60mA

500 Q v, 6kQ

t>0 I2711
40V 2kQ S 400 mH

5000 . 6kQ oL

igy 11 ig ri1
40V1 2kQ S 400 mH 8kQ 400mH
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27.2 Section 2

Assuming continuity in the inductor current i1(07) = i1(0*) = 20mA on Figure 34c, where
i1=—1l9, thus, setting i1(0*) = —i9(0*) = 20mA we get the currents

11(07) =20mA i2(0")=-20mA

27.3 Section 3
It’s obvious, that circuits 34b and 34c are equivalent to Figure 32 (Page 46) with 7 = 50 ms
and Ip = Vo/R.q = 20 mA:

it+Eirt)=£1, ,t>0 (27.35)

27.4 Section 4
Again, adopting ZIR? solution (26.34)
. . -t
i1(#)=11(0")exp (—) ,t>0
T

i2(¢) =—i1(?)

28. Question 3 Solution

28.1 Section 1
28.2 Section 2
28.3 Section 3
28.4 Section 4

3Since, there is no source in the circuit
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