MILA UNIVERSITY CENTER **Department of Civil Engineering and Hydraulics**

Course : Reinforced Concrete 1 TD : SERIES OF EXERCISES No. 03

(Steel-Concrete Bond)

Exercise 01:

Determine the equivalent straight anchorage length for a tension bar of an interior beam resting on an edge column.

Given:

Steel: HA20 ; $f_e = 500 \text{ MPa}$

Concrete cover: c = 3 cm; Hook angle = 120° ; Length $l_1 = 8\emptyset$; Column section: 25 cm × 25 cm

Exercise 02 :

Calculate the required length l₁ to ensure the full anchorage of a HA16 bar in a beam resting at each end on a reinforced concrete wall.

Given:

fc28 = 30 MPa; $f_e = 500 \text{ MPa}$; $\gamma_s = 1.5$; Concrete cover = 2.5 cm; Hook angle = 135° ; Wall thickness = 18 cm

Exercise 03 :

Determine the straight anchorage length for a bar of grade FeE400 and diameter $\emptyset = 16$ mm with **fc28** = 25 MPa.

Then recalculate for a 180° hooked anchorage

Exercise 04 :

Determine the straight anchorage length of a bar with diameter Ø in FeE 215, 235, 400, and 500 steel for concrete with a compressive strength:

fc28 = 20, 25, 30 et 40 Mpa

----- End of the Series ------