
Algorithmics and data structures 2 Chapter 3 linked lists

1

Chapter 3: Linked lists

1. Introduction

� Central memory is made up of a very large number of bytes.
� Each byte is identified by a number called the byte address.

Addresses 08 Bit

Byte 0
Byte 1
Byte 2(X)
 .

.

.
Byte n-1(P)
Byte n

� Each variable in memory occupies contiguous bytes, that is, bytes that

follow one another.

Example :

float x;

In C++:
� A float occupies 4 consecutive bytes. The address of the variable is the

address of its first byte .
� We can know the address of the variable x by the operator & .
float x;
p = &x ; //address of variable x: address of its first byte
The variable p contains a value which is the address of the variable x

2. Memory allocation
� The algorithms (programs) essentially consume two resources:

� Execution time.
� The reserved memory space.

� There are two types of allocation or reservation of memory space:
� Static allocation.
� Dynamic allocation.

2.1.Static allocation :

� The allocation of memory space is made before execution of the
program (after compilation).

� This is therefore the case of simple and array type variables.
Example :
X: real;
A: integer;
T[50]: integer array;
Student_List[1500]: Student Table;
X, A, T, Student_List are static variables

2.2.Dynamic allocation:

� Space is allocated as the program is executed.
� To be able to make this type of allocation, the user must have both

operations: allocation and release of memory space.
� The majority of programming languages offer this possibility.

The operating system provides a part of the Central Memory for this
purpose called the TAS (table allocation system).
Example :
int X;
P=&X ;
X is a dynamic variable

Algorithmics and data structures 2 Chapter 3 linked lists

2

3. The pointer type

3.1.Definition :
� In programming, a pointer is a variable containing a memory address.
Example :

Central memory
P 1000 @=50

 …

X 15 @=1000

x=15
P a pointer contains the address of x in memory
P= 1000

3.2.Declaration of a pointer:

In algorithmic In C++ language

<Variable name>: * Variable type;

Examples :

p: * integer;

Q:*real;

Variable type * <Variable name>;

Examples :

int * P ;

float * Q ;

Example 1:

#include <iostream>
int main ()

{
int x=4; //declaration of an integer variable x
int *p ; //declaration of a pointer variable p
p=&x; //p points to x (p contains the address of x)
cout <<*p ; // display the contents of x
getchar();
return 0;
}

Result : 4

Example 2:

#include <iostream>
int main ()
{
int x=4; //declaration of a variable x
int *p ; //declaration of a pointer p
P=&x ; //p points to x (p contains the address of x)
*p=15; // the value 4 of x is replaced by 15
cout << x ; // print the contents of x
Return 0;
}

Result: 15

Example 3:

#include <iostream>
int main ()
{
int x=4; //declaration of a variable x

 (*)Symbol for the

pointer type

Algorithmics and data structures 2

int *p ; //declaration of a pointer p
P=&x; //p points to x (p contains the address of x)
*p= -3; // the value 4 of x is replaced by -3
X = X*3;
cout<< x // print the contents of x
Return 0;
}

Result : -9

3.3.Pointer operation
a) Dynamic allocation:
Syntax :

In algorithmic In C++
P= Allocate (type)

P = new type ;

� Allocation of a space of size specified by the type of P.
� The address of this space is rendered in the variable of p
Examples:
� Allocation of a memory area for an integer:
int * p;
P = new int;

� Allocation of a memory area for an array of 10 integers:

int * tab;
tab = new int[10];
� To access the three boxes in our table we can do the following:

/* The first box */
(*tab)= 16;
/* The second box */
*(tab + 1) = 12;

Chapter 3

3

P.
of pointer type P.

Allocation of a memory area for an array of 10 integers:

boxes in our table we can do the following:

/* The third box */
*(tab + 2) = 11;

b) Freeing a pointer:

Syntax :

In algorithmic
delete (p)

� freeing the memory space pointed by P

c) Pointer and record:
� To access a field of a record pointed to by a pointer P,

notation:
Syntax : P -> “field”

Example :

Algorithm exp_PE
type
structure point
x: real ;
y: real;
end structure
P: * point;
Begin
P = Allocate (point) ; // memory space allocation
P -> x �10.8;
P -> y �12.5;
Write (p -> x); // displays 10.8
Delete (p); //freeing up memory space
END.

linked lists

In C++
delete(P);

pointed by P

To access a field of a record pointed to by a pointer P, we use the “->”

; // memory space allocation

//freeing up memory space

Algorithmics and data structures 2 Chapter 3 linked lists

4

4. “List” data structure
4.1. Definition

� A list is a data structure consisting of a finite (possibly empty)
sequence of elements of the same type .

� Each element in the list is identified according to their rank in the list.
Example :
a list of integers L = {11,-5,6,0}
the rank of element 6 is 3 .

4.2.Representation of lists

� Two possible solutions:
1) Contiguous representation: we use contiguous cells when placing

elements in a table.
2) Linked (or chained) representation: it consists of using pointers to

connect the elements.

4.3.linked lists
� A linear linked list LLL is a set of links (dynamically allocated

memory boxes) linked together.
� Schematically, it can be represented as follows:

L 8 @2 6 @3 12 @4 15 Nile

Head Node Value Next
� A Node is a structure with two fields:

� Value field containing the information.
� Next field giving the address of the next link.

� The first element address of an LLC is often called head of the list.
� Each Node is associated with an address. This address is stored in the

next field of the previous Node.

� The next field of the last Node points to Nil (consists of the address
which does not point to any Node).

4.4.Declaration:
� In algorithmic language:

type
Structure Name_Type_ Node
Element : Typeqq;
Next : * Name_Type_ Node;
End Structure ;
type
List: * Name_Type_ Node ;// the list type which designates each Pointer
// to a Node
L: List ; // the same meaning to L: * Name_Type_ Node;
L, P, Q: List;

Typeqq: designates any type (int, float, person, student, Product, etc.).

The declarations:
L, P, Q: List; // means L, P, Q are pointers to Nodes

� In C++ language:

TypeDef
struct Name_Type_Link
{
Typeqq Element ;
Name_Type_Node * Next ;
};
typedef
Name_Type_ Node * List ;
List L, Q, head ; // equivalent to Name_Type_ Node * L, Q, head;

Algorithmics and data structures 2 Chapter 3 linked lists

5

Example 1: linked list of integers

type
Structure node
Ele: integer;
next: * node;
end structure

Type List: * node;

LE: List;

Example 2: linked list of student

type
structure Student
…
end structure
type
Structure node
Ele: student;
next: * node;
end structure
Type List: * node ;

L:list;

Example 3: linked list of people

Type

Structure Person

name: string

first name: string

age: integer

end structure

Type

Structure node

Ele: person;

next: * node;

end structure

Type List: * node;

Noticed :

� Access to a field of a structure is done through the point for ordinary
variables and through the “ -> “for pointer type variables.

Example :

X: Student; then X.name

Y: *Student; then Y->name.

4.5.List operations:
a) create_node : creates a new node containing the value x and returns a

pointer containing its address.

Role : creates a new node

create_node P : List X : typeq

Algorithmics and data structures 2 Chapter 3 linked lists

6

Function create_node (x: typeq): List
P: List // or P: * node
Begin
P �Allocate (node); ………….(1)
P - > Ele �x;…………………(2)
P -> next �Nile; ………………(3)
Return (P);
END

Ele next

b) Is_empty: tests if the list is empty or not

Function Is_empty(L: List): Boolean
Begin
If (L=Nil) then
Return (true);
else
Return (false);
End if
END ;

c) First : returns the first element of the list L

Function First (L: list): typeq ;
Begin
If (L==Nil) then
Write (“the list is empty”);
else
Return (L -> ele);
End if
END

d) Insertion of an element: the insertion of a new element in the LLL list

consists of:
1) First creation of the corresponding node,
2) Assignment of the value to the element fild,
3) Then the chaining of the new node with the list LLL is:

� At the top of the list : To add the new node at the start of the list
we must change the address of the head each time.

� At the end of the list : To add the new node at the end of the list
we must always keep two pointers: the head of the list and the
tail (address of the last node) of the list.

� In the middle of the list : To add the new node in the middle of
the list we must first

-Find its position (the address of the node which will precede it p
and that of the node which will follow it s)

P

Role : tests if the list is empty or not

Is_empty
B : Boolean P : list

Role : returns the first element of the list L

First E : typeq L :list

Algorithmics and data structures 2 Chapter 3 linked lists

7

- Then cut the chaining between p and s.
- Now p points towards the new node and the new node points
towards s.

Inserting an element at the top of the list :

Function Insert_t (x: typeq, L: List): List;
P: List; // or P: *node ;
Begin
P �create_node (x);
P -> next �L;
Return (P);
END ;

Procedure Insert_t (x: Element, var L: List);
P: List;
Begin
P �create_node (x);
P -> next �L;
L � P;
END ;

e) Rest (L: List): returns the list L without the first element. It returns the
address of the next element (node) in the list.

Function rest (L: List): List
Begin
Return (L -> next);
END;

f) List length: returns the number of elements in list L.

Function List_length (L: List): integer // recursive version.
Begin
If (L=Nil) then
Return (0);
else
Return (1 + List_length (Rest(L)));
End if
END

function List_length (L: List): integer // iterative version.
Current: List; // current: *node;
Nb: integer;
Begin
Number �0; current �L;
While current!= Nil do
Nb �Nb+1;

Role : insert an element at the top of the list

Insert_t
P : list

P : list

X : typeq

Role : returns the list L without the first element

Rest
P : liste P : liste

Role : returns the number of elements in list L

List_length N : integer P : list

Algorithmics and data structures 2 Chapter 3 linked lists

8

current �current ->next ;
end while
Return (Nb);
END;

g) display : Show elements in a list.

Procedure display (L: List) // recursive version.
Begin
If (L!=Nil) then
Write (first (L));
 else
Write (first(L));
Show(Rest (L));
End if
END ;

Procedure display (L: List);// iterative version.
Current: List; // current: *node
Begin
While (current != Nile) do
Write (current -> Ele);
current �->next;
end while
END ;

h) Deletion of an element: Deletion consists first of breaking the
chaining of the node concerned from the list, according to one of the
three cases, then releasing this node:
� Remove first item from list: Changed the head of the list to point

to the next node in the list.
� Delete an element in the middle of the list : Let
� Remove the last element from the list : the node before that in

the queue will point to Nile.

Example:

procedure remove_first (Var L: List)
P: List;
Begin
P �L ;
L �L->next ;
Release (P);
END;

2.6. Types of linked lists
a) Simple linked lists
b) Doubly linked lists
c) Simple circular linked lists

Role : display the elements of the list.

display L : list

