Algorithmics and data structures 2

Chapter 3

linked lists

Chapter 3. Linked lists

1. Introduction

» Central memory is made up of a very large numbdytds.
» Each byte is identified by a number called the laytdress.

Addresses 08 Bit
Byte O
Byte 1

Byte 2(X) .

Byte n-1(P)
Byte n

» Each variable in memory occupies contiguous bytet, is, bytes that
follow one another.

Example :
float x;

In C++:

> A float occupies 4 consecutive bytes. The addréfiseovariable is the
addres®f its first byte .

» We can know the address of the variable x by thezaipr& .

float x;

p = &x ; //address of variable x: address of itstfbyte

The variablep contains a value which the addressof the variablec

2. Memory allocation
» The algorithms (programs) essentially consume &gources:
v" Execution time.
v The reserved memory space.
» There are two types of allocation or reservatiomemory space:
v/ Static allocation.
v" Dynamic allocation.

2.1.Static allocation:

» The allocation ofmemory spaceis madebefore executionof the
program (after compilation).

» This is therefore the case of simple and array wg&bles.

Example:

X: real;

A: integer;

T[50]: integer array;

Student_List[1500]: Student Table;

X, A, T, Student_List aretatic variables

2.2.Dynamic allocation:

» Space is allocated #se program is executed.

» To be able to make this type of allocation, ther usest have both
operationsallocation andrelease of memory space.

» The majority of programming languages offer thisgbility.

The operating system provides a part of the Cerdtamory for this
purpose called the TAS (table allocation system).

Example:

int X;

P=&X;

X is a dynamic variable

Algorithmics and data structures 2 Chapter 3

linked lists

3. The pointer type

3.1.Definition :
> In programminga pointer is a variable containing a memory address.

Example:
Central memory

P 1000 @=50

X 15 @=1000
x=15 N
P a pointer contains the address of x in memory (*)Symbol for the
P= 1000 pointer type

3.2.Declaration of a pointer:

|

{

int x=4; //declaration of an integer variable x

int *p ; //declaration of a pointer variable p

p=&x; //p points to x (p contains the address of x)
cout <<*p ; // display the contents of x

getchar();

return O;

}

Result: 4

Example 2:

#include <iostream>
int main ()

{
int x=4, //declaration of a variable x

int *p ; //declaration of a pointer p

P=&x ; //p points to x (p contains the address)of x
*p=15; // the value 4 of x is replaced by 15

In algorithmic In C++//@age cout << x ; /I print the contents of x

<Variable name>: * Variable type; Variable type * <Variyable name>, Return 0;
Examples: Examples: s
p:* integer; int*pP; Result: 15
Q:*real; float * Q ; Example 3:
Example 1: #include <iostream>

. . int main ()
#include <iostream> {
int main () int x=4; //declaration of a variable x

Algorithmics and data structures 2

Chapter 3

linked lists

int *p ; //declaration of a pointer p

P=&x; /Ip points to x (p contains the address of x)
*p=-3; // the value 4 of x is replaced by -3

X = X*3;

cout<< x
Return 0O;

}

/I print the contents of x

Result: -9

3.3.Pointer operation
a) Dynamic allocation:

Syntax :
In algorithmic In C++
P= Allocate (type) P =newtype;

> Allocation of a space of size specified by the tgpeP.

» The address of this space is rendered in the ‘amdipointer type P.

Examples:
» Allocation of a memory area for an integer:

int * p;
P = new int;
> Allocation of a memory area for an array of 10 gaes

int * tab;

tab = new int[10];

» To access the thrdmxes in our table we can do the follow
[* The first box */

(*tab)= 16;

/* The second box */

*(tab + 1) = 12;

/* The third box */
*(tab + 2) = 11,

b) Freeing a pointer:

Syntax :
In algorithmic In C++
delete(p) delete(P);

> freeing the memory spageointed by |

c) Pointer and record:

» To access a field of a record pointed to by a poiRtwe use the “->”

notation:
Syntax : P -> “field”
Example:

Algorithm exp_PE
type

structure point
x: real ;

y: real;

end structure

o

[e]

X y
> 105 12.5

P: * point;

Begin

P =Allocate (point) ; // memory spa
P ->x<10.8;

P->y<&12.5;

Write (p -> x); // displays 10.8
Delete (p);//freeing up memory spa
END.

ce allocati

Algorithmics and data structures 2 Chapter 3

linked lists

4. “List” data structure
4.1. Definition

> A list is a data structure consisting of a finitpogsibly empty)
sequencef elements of the same type .

» Each element in the list identified according to theirank in the list.

Example:

a list of integers L = {11,-5,6,0}

the rank of elemer@iis 3.

4.2 .Representation of lists

» Two possible solutions:

1) Contiguous representation: we use contiguous cells when placing
elements in a table.

2) Linked (or chained) representation: it consists of using pointers to
connect the elements.

4.3linked lists

> A linear linked list LLL is a set of links (dynamically allocated
memory boxes) linked together.

» Schematically, it can be represented as follows:

[L+——[8] @2+——>[6] @3+—>{12] @4}—»[15 Nile |
?

Head Node Value Next
» A Nodeis a structure with two fields:

v Value field containing the information.

v" Nextfield giving the address of the next link.

» The first element address of an LLC is often callead of thelist.
» Each Node is associated with an address. This sslikestored in the
next field of the previous Node.

» The next field of the last Node points to Nil (cmts of the address
which does not point to any Node).

4.4.Declaration:
» In algorithmic language:

type

StructureName_Type Node
Element : Typeqq;

Next : * Name Type Node
End Structure ;

type

List: * Name_Type Node ;// the list type which designates each Pointer
// to a Node

L: List ; // the same meaning to L:Name _Type Node
L, P, Q: List;

Typeqq: designates any type (int, float, person, studawiirt, etc.).

The declarations:
L, P, Q: List; // means L, P, Q are pointers to B®d

» In C++ language:

TypeDef
structName_Type Link
{
TypeqqgElement ;

Name_Type Node Next ;

8

typedef

Name_Type_Node Eist ;

List L, Q, head ; // equivalent to Name_Type_ Nbde Q, head;

Algorithmics and data structures 2 Chapter 3 linked lists
Example 1: linked list of integers age: integer

type end structure

Strugture node Type

Ele: integer;

next: * node: Structure node

end structure Ele: person;

Type List: * node; next: * node;

LE: List; end structure

Example 2: linked list of student Type List: * node;

type Noticed :

structure Student > Access to a field of a structure is done throughpibint for ordinary
variables and through the “ -> “for pointer typeiaales.

end structure

type Example :

Structure node X: Student; then X.name

Ele: student; Y: *Student; then Y->name.

next: * node;

end structure
Type List: * node ;

L:list;

Example 3: linked list of people

Type
Structure Person
name: string

first name: string

4.5.List operations:
a) create_node: creates a new node containing the value x angngia
pointer containing its address.

X : typeq ——> create_node |, p.|ist

Role: creates a new node

Chapter 3

linked lists

Algorithmics and data structures 2
Function create_node (x: typeq): List
P: List // or P: * node
Begin
P <Allocate (node); (2)
P->Ele€X,. .o, (2)
P ->next&Nile; ..ol 3)
Return (P);
END

P Ele next

b) Is_empty: tests if the list is empty or not

P : list —> Is_empty —» B :Boolean

Role: tests if the list is empty or not

Function Is_empty(L: List): Boolean
Begin

If (L=Nil) then

Return (true);

else

Return (false);

End if

END ;

c) First : returns the first element of the list L

L :list —P> First — E:typeq

Role: returns the first element of the list L

Function First (L: list): typeq ;
Begin

If (L==Nil) then

Write (“the list is empty”);
else

Return (L -> ele);

End if

END

d) Insertion of an element:the insertion of a new element in the LLL list
consists of:
1) First creation of the correspondingde,
2) Assignment of the value to the element fild,
3) Then the chaining of the new node with the list LikL

v' At thetop of thelist : To add the new node at the start of the list
we must change the address of the head each time.

v' At theend of thelist : To add the new node at the end of the list
we must always keep two pointers: the head of igteahd the
tail (address of the last node) of the list.

v" In the middle of the list : To add the new node in the middle of
the list we must first

-Find its position (the address of the node whidh pvecede it p

and that of the node which will follow it s)

Algorithmics and data structures 2 Chapter 3 linked lists

- Then cut the chaining between p and s. P:liste —» Rest —> P:liste
- Now p points towards the new node and the newenoaoints
towards s. Role: returns the list L without the first element
Inserting an element at the top of the list : Function rest(L: List): List
Begin
b list Return (L -> next);
IS
SN Insert_t — > P ist END;
X :typeq

Role: insert an element at the top of the list f) List length: returnsthe number of elements in list L.

P:list ~— List_length — N :integer

Role: returnsthe number of elements in list L

Function Insert_t (x: typeq, L: List): List;
P: List; // or P: *node ; Function List_length (L: List): integer // recursive version.
Begin Begin
P <create_node (x); If (L=Nil) then
P -> next<L; Return (0);
Return (P); else
END ; Return (1 +List_length (Rest(L)));
End if
Procedurelnsert_t (x: Elementyar L: List); END
P: List;
Begin function List_length (L: List): integer// iterative version.
P <create_node (X); Current: List; // current: *node;
P -> next<L; Nb: integer;
L <P, Begin
END ; Number<0; currenté&L;
e) Rest (L: List): returns the list L without the first element. Itums the While current= Nil do
address of the next element (node) in the list. Nb <Nb+1;

Algorithmics and data structures 2

Chapter 3

linked lists

current¤t ->next ;
end while

Return (Nb);

END;

g) display: Show elements in a list.

L: list —> display

Role: display the elements of the list.

Proceduredisplay (L: List) // recursive version.
Begin

If (L!=Nil) then

Write (first (L));

else

Write (first(L));

Show(Rest (L));

End if

END ;

Proceduredisplay (L: List);// iterative version.
Current: List; // current: *node

Begin

While (current != Nile)do

Write (current -> Ele);

current&->next;

end while

END ;

h) Deletion of an element: Deletion consists first of breaking the
chaining of the node concerned from the list, agdicgy to one of the
three cases, then releasing this node:

v" Remove first item from list: Changed the head of the list to point
to the next node in the list.

v Deletean element in the middle of thelist : Let

v" Remove the last element from the list : the node before that in
the queue will point to Nile.

Example:

procedure remove_first(Var L: List)
P: List;

Begin

P<&<L;

L €L->next ;

Release (P);

END;

2.6. Types of linked lists

a) Simple linked lists

b) Doubly linked lists

c) Simple circular linked lists

