Mila University Center Institute of Mathematics and Computer Science Department of Computer Science Ist Year LMD

DIRECTED WORK SERIES NO. 3 (THE FILES)

Module: Algorithmic and data structures 2

Academic year: 2024/2025

Exercise 1 :

Consider the following record type:

Type Structure Student Number: integer; Last_name, First_name: string; Average: real; End Structure;

Let **T** be an array of **N** students (N ≤ 100).

Write an algorithm allowing you to copy all the **admitted** students belonging to **T** into an **ADMIS file** of student type. A student is admitted if his average is greater than or equal to 10.

Exercise 2:

Consider the following record types:

Туре	Structure TDiscipline	Structure Student
structure Date	Discipline: string ;	Last name, First name :
Day, month, year: integer;	Faculty: string;	string; Date_Birth :
End Structure;	End Structure;	Date;
		Sector : TDiscipline ;
		End Structure;

Let **FStudent** be a file of students.

Write an algorithm that allows you to:

- a) Fill the **FStudent** file.
- b) Split the **FStudent** file into two files, F_MI (students from the "MI" faculty) and F_Others (students from other faculties).

Exercise 3:

Consider the following type: Type Structure Product Code: Integer; Designation: String; Price: real; End Structure;

Let **FProduct** be a product file.

Write a Function that checks if the elements of **FProduct** are sorted in ascending order of their Code.