Experiment 5. Determination of Enthalpy of neutralization ΔH_{neut}

Introduction

When a reaction takes place at constant pressure, the heat measured (Q_p) is equivalent to the change in enthalpy (ΔH) of the reaction, which is commonly referred to as the heat of reaction. The heat released or absorbed by a reaction can be determined by measuring the temperature change of the calorimeter.

Exothermic reactions release heat and have a negative ΔH value ($\Delta H < 0$). Conversely, reactions that absorb heat are classified as endothermic, with ΔH having a positive value ($\Delta H > 0$).

Heat of neutralization

The heat of neutralization is the energy released when one mole of an acid interacts with one mole of a base to generate one mole of water. The reaction of a strong acid with a strong base is an exothermic reaction that produces water and heat as products.

$$H_3O^+_{(aq)} + OH^-_{(aq)} \rightarrow 2H_2O_{(l)} + heat$$

The heat of neutralization is given by the following equation, and it is generally expressed in units of kJ/mol of acid (or base) reacted and the mass of the solution equals the combined masses of the acid and base solutions.

$$Q_p = \Delta H_{neut} = \frac{Q}{n}$$

Where:

- Q_p : The heat released by the reaction
- ΔH_{neut} : The enthalpy of neutralization
- **n** : The number of mole

Objective of the experiment

The objective of this experiment is to determine the heat of neutralization of a strong acid (HCl) with a strong base (NaOH) using calorimetry.

Materials and Chemicals

Materials	Chemicals	
• Calorimeter with mixer	Distilled water	
• Thermometer	• HCl 0.5 M	
• Beaker	• NaOH 0.5M	

Experimental Procedure

1. Using a graduated cylinder, take 50mL of NaOH solution.

2. Put the NaOH solution into the calorimeter.

3. Close the calorimeter, then measure the temperature of the (calorimeter + NaOH solution), and let it be T_1 .

- **4.** Also, with using a graduated cylinder, take 50mL of HCl solution.
- **5.** Add the HCl solution into the calorimeter.

6. Close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (NaOH + HCl + calorimeter), let it be T_{eq} .

Questions

1. Record the obtained results in the table.

Mass of NaOH (g)	Mass of HCl (g)	Total Mass (g)	Temperature T ₁ (K)	Temperature $T_{eq}(K)$

- **2.** Calculate the number of moles.
- **3.** Calculate the heat released by the reaction Q_1 .
- **4.** Calculate the $\Delta H_{neutralization.}$
- **5.** Predict the reaction type and justify
- **6.** Write the equation reaction with the enthalpy change.

Given : $K_{cal} = 61.51 \text{ J/g}$. K, $C_{H2O} = 4.185 \text{ J} / \text{g}$. K, $M_{NaOH} = 40 \text{ g/mol}$, $M_{HCl} = 36.5 \text{g/mol}$