Experiment 4. Determination of latent heat of fusion of ice L_{fus}

Introduction

Ice fusion is the transition of water from a solid to a liquid form, which requires the absorption of heat energy and occurs at a constant temperature.

$$H_2O_{(s)\rightarrow}H_2O_{(l)}$$

Latent heat of fusion L_{fus}

The latent heat of fusion of ice is the thermal energy needed to convert a mass of ice at its melting point into water at the same temperature without changing its temperature. The unit for latent heat of fusion is kilojoules per gram (kJ/g), and it is expressed by following equation :

$$L_{fus}=\frac{Q}{m}$$

Where:

- L_{fus} : The latent heat of fusion
- *Q* : The heat energy
- **m** : Matter mass

The enthalpy of fusion ΔH_{fus}

The enthalpy of fusion is the heat energy needed to change one mole of a substance from solid to liquid, and it is expressed by following equation :

$$\Delta H_{fus} = \frac{Q}{n} = L_{fus}.M$$

Objective of the experiment

This experiment aims to determine the latent heat and enthalpy of fusion of ice L_{fus} and ΔH_{fus} using a calorimeter.

Materials	Chemicals
• Calorimeter with mixer	Distilled water
• Thermometer	• Pieces of ice
• Beaker	
Analytical balance	

Materials and Chemicals

Experimental Procedure

1. Put ice pieces in a beaker of distilled water, let them to reach thermal equilibrium, then test the resulting temperature to ensure it is $T_0 = 0^{\circ}C$.

2. Take a beaker and ignore its weight before filling it with $m_1=200$ g of cool water.

2. Put the cold water into the calorimeter.

3. Close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + calorimeter), let it be T_1 .

4. Take out pieces of ice from the beaker and wipe them quickly with a paper napkin, we weigh them and put them in the calorimeter, monitoring by means of a thermometer the drop in temperature resulting from the melting of the piece of ice.

5. Close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + ice + calorimeter), let it be T_{eq} .

Questions

- **1.** Record the obtained results in a table.
- **2.** Calculate the heat of fusion of ice.
- **3.** Calculate the latent heat of fusion of ice.
- 4. Compare the experimental and theoretical values.
- **5.** Calculate the enthalpy of fusion of the ice.
- **6.** Predict the reaction type, and justify.

Given :

The theoretical specific heat values of ice $L_{fus} = 335 \text{ J/g}$ The calorimeter thermal capacity $K_{cal} = 61.51 \text{ J/g}$. K The specific heat of water $C_{H2O} = 4.185 \text{ J/g}$. K

