Series 2

Exercise 1:

Hydrogen gas has a nonpolluting combustion product (water vapor). H_2 is used as a fuel abord the space shuttle and in earthbound cars with prototype engines:

$$2\mathrm{H}_2(g) + \mathrm{O}_2(g) \rightarrow 2\mathrm{H}_2\mathrm{O}(g)$$

a. Express the rate in terms of changes in [H₂], [O₂], and [H₂O] with time.

b. When $[O_2]$ is decreasing at 0.23 mol/l, at what rate is $[H_2O]$ increasing.

Exercise 2 :

The following data were measured for the reaction of nitric oxide with hydrogen:

 $2 NO(g) + 2 H_2(g) \longrightarrow N_2(g) + 2 H_2O(g)$

Experiment Number	[NO] (mol/l)	[H2] (mol/l)	Initial Rate (mol/l.s)			
1	0.10	0.10	1.23 x 10-3			
2	0.10	0.20	2.46 x 10-3			
3	0.20	0.10	4.92 x 10-3			

a) Determine the rate law for this reaction.

b) Calculate the rate constant.

c) Calculate the rate when [NO] = 0.050 M and $[H_2] = 0.150 \text{ M}$.

Exercise 3 :

The following chemical process has been studied in a batch isothermal reactor:

 $A \rightarrow$ Products.

The reaction mix was analyzed at different times, yielding the following concentrations for reactant A

Reaction time (min)	0	5	15	50	80	100	160
[A] (mol/L)	1.00	0.78	0.54	0.26	0.18	0.15	0.10
	.1						

Determine the kinetic equation of the reaction.

Exercise 4 :

Half-life time for substance A in a second order reaction A \rightarrow Products at 20 °C is 50.5

seconds

when [A]₀=0.84 mol/L.

a) Calculate the amount of time required so that the concentration of A is reduced to one fifth

of its initial value.

b) If the rate of the reaction is doubled when temperature increases from 20°C to 28°C,

calculate the activation energy in joule of the process.