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Chapiter 1: Mathematics Revision

1. Introduction: Mathematics Revision

This lesson provides a mathematical revision covering fundamental concepts essential for
physics and engineering applications. We will review the elements of length, surface area,
and volume in different coordinate systems, as well as important mathematical operators
and calculus techniques.

2. Elements of Length, Surface Area, and Volume in Differ-
ent Coordinate Systems

We will analyze the fundamental differential elements in the three primary coordinate
systems: Cartesian, cylindrical, and spherical. Understanding these elements is crucial for
evaluating integrals in physics and engineering.

2.1 Cartesian Coordinate System

A Cartesian coordinate system is defined by an origin point O and three mutually per-
pendicular axes (Ox,0y,0z). The unit vectors along these axes are i,j,k. Any point M in
space is represented by the position vector:

ﬁzwzxi+yj+zk

/ dx

- dz | :

A J

Sy rd y

L X

Cartesian basis (a) Position vector and (b) elementary displacement and volume



Example: Consider a straight-line motion along the x-axis where x = 2¢, y =3, and z =0.
The velocity vector is given by:

dR d
V= E = a(zti+3j+0k):2i
Differential Length Element: The differential displacement is given by:

dOM =d 1 =dxi+dyj+dzk

Differential Surface Element: The surface element depends on the plane of integra-
tion:
dSy=dydz, dS,=dxdz, dS,=dxdy

Differential Volume Element: The elementary volume is given by:
dV =dxdydz

2.1.1 Cylindrical Coordinate System

In the cylindrical coordinate system (r,0,z), a point is represented as:

x=rcosf, y=rsinf, z=z

It should also be noted that we can write:
u, =cosfi+sin0j

and derive this vector with respect to 6:

We obtain:
du, =d0(-sinfi+cosbj),
knowing that:
cos (9 + z) =—sinf and sin (9 + E) = cos#f.
2 2
Thus:
du, ) . b/ .
0 can be obtained by rotating wu, by an angle of 3 and we can write:
du,
do v

The position vector DM is written as:

DM = pu,, + zk = (xi + yj) + 2k,



Cylindrical base

where x and y are the Cartesian coordinates of the point M in the Oxy plane, given by:
x=pcosf, y=psinf, and z==z.
The expression for the elementary displacement is:
dDM=dpu, +pdOug+dzk.
The expression for the elementary surface is:

ds=pdpdb.

Example: Find the velocity vector for a particle moving in a circular path where r = 2,
0 =t2, and z = 4¢. The velocity components are:

dr deo dz
v,_%_o, vg—ra—2(2t), UZ_E_LL

Thus, the velocity vector is:
v =0e, +4teg +4e,

Differential Length Element:

d1 =dre,+rdfey+dze,



bl rd 6

dM

v

Cylindrical coordinates

Differential Surface Element:

dS,=rd0dz, dSg=drdz, dS,=rdrd0

Differential Volume Element:

dV =rdrdfdz

2.2 Spherical Coordinate System
In the spherical coordinate system (r,0,¢), a point is represented as:

x=rsinfcos¢p, y=rsinfsingp, z=rcosfd

The position vector of point M in spherical coordinates, meaning in the spherical basis, is
written as:

OTizruszi+yj+zk.

From the figure, we can express x,y,z in terms of r,0, ¢:

X =0Mcos@ =rsinfcos,
Y =OMsing =rsinfsing,

Z =0OM cosB =rcos0.

Thus, we deduce:

u, =sinfcos@i+sinfsingj+ cosOk.



The unit vector Tw at OM is written as:

u_’q, =cos @i+ sin@j.
This vector u_(;, can be obtained either by replacing ¢ with ¢ + 27 or by differentiating
u, with respect to ¢:
U, = —singi+cos@j.
This basis vector can also be expressed as the derivative of u, with respect to ¢:

- 1 ou,
Ug

~ sin@ op
The third basis vector in the spherical coordinate system is given by:

—_—
—, Ou,

ug = 60

2.2.1 Elementary Displacement:

—_

dM =dGi) =dris +rdi. +r£d9 s

o

do.

=dru, +rd0ug + r(sinfd ¢)u,.

2.2.2 Elementary Surface and Volume:

dS =r?sin0dOde.
dV =r?sinfdrd6de.

Example: Find the length of an infinitesimal arc in spherical coordinates for a small
change in 6 while keeping r and ¢ constant.

dl=rd0o

Differential Length Element:

d7 = drey +rdfey +rsinfdgey

Differential Surface Element:

dS,=r%sin0d0d¢, dSp=rsinddrd¢, dSs=rdrdd

10



elementary volumes in spherical coordinates

Differential Volume Element:

dV =r?sin0drdfd¢

11



2.2.3 Transformational relationships between different coordinates

From

To

Transformation Equations

Cartesian(x, y,z)

Spherical(r,8, ¢)

r= \/xz +y2+22
z

0= arccos(—)
r

¢ = arctan2(y,x)

Spherical(r, 8, ¢)

Cartesian(x, y, z)

x =rsinfcos¢

y=rsinfsing

z=rcosf
p=y/x2+y?
Cartesian(x,y,z) | Cylindrical(p,,z) ¢ = arctan2(y, x)
z=z
X =pCoS
Cylindrical(p,¢,z) | Cartesian(x,y,z) y=psing
z=z
p=rsin0
Spherical(r,8,¢) | Cylindrical(p,,z) p=¢
z =rcosf

Cylindrical(p, ¢, 2)

Spherical(r,8, ¢)

r:\/p2+22

6 = arctan (g)
=9

2.2.4 Solid Angles

A solid angle d(2 in spherical coordinates is given by:

dQ) =sin6d0d¢p

The total solid angle in three-dimensional space is:

3.

2n pn
Q= f f sin0dOd¢ = 4n
0 0

Operators in Vector Calculus

Example: Compute the gradient of the scalar function f(x,y,z) = x2 + y2 + z2:

Vi =(2x,2y,2z)

12
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Solid Angles

Example: Compute the divergence of the vector field A = (x2, y2,22):

0 0 0
VA= —@2)+—0H)+—(E>=2x+2y+2z
0x oy 0z

These examples reinforce the mathematical concepts necessary for physics applications.

3.1 Applications:
3.1.1 Calculate the perimeter of a circle C with radius R (simple integral).

Solution:
We have dl = R d6, hence:

2m
C= RdO =2nR.
0

3.1.2 Calculate the area of a disk D with radius R (double surface integral).

We use the differential surface element dS =dp p df, hence:

Solution:
R p271
szf dpd@zf [ pdpdo.
S o Jo

Evaluating the integral:

2r R R2
D:f d@f pdp =21 x — =R
0 0 2

13



arc length
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Perimeter of a circle

R'dR'
E{ =Ra2n: T Laan /
) (22 +R7) /
E. =kodn| 1o i | 7/
. _ '\ICJ+RJi| / F = area charge
| ?/__ 1 densty
k= = Caulomib'’s - = T B
4me, constant (f O r 3 %
— e == -
Area of a disk

3.1.3 Calculate the volume of a cylinder V with radius R and height H (triple
volume integral).

We use the differential volume element dV =dp pd08dz, hence:

Solution:
R 21 H
V:fff ddedz:f pdpf d@f dz.
1% 0 0 0

Evaluating the integral:
H 2r R
V= f dz f do f pdp.
0 0 0

14



V=nr’xh

Figure 9: Volume of a cylinder

R2
V=H><27'[><7=7[R2H.

3.14 Calculate the surface area of a hemisphere D with radius R (excluding
the horizontal disk) (double surface integral).

SURFACE AREA OF A HEMISPHERE @Y

Area = mr®
Figure 10: Surface area of a hemisphere

We use the differential surface element dS = R?sin6d6 d ¢, hence:
Solution:

D= ff R?sin0d0d¢.
N

Evaluating the integral:

D=R f s1n0d6 d(,b

15



D = R2%(~cosf Z) « (27) = R2(1+1) x 27 = 27R>.

3.1.5 Calculate the volume of a sphere V with radius R (triple volume integral)

z
FSing JhGA, 18
"é‘*f’de‘ L\ rsing do
Lt
/A, 5 Y
S e
l'/.}/

Volume of a sphere

We use the differential volume element dV = r?sinfdrdf d¢, hence:

Solution:
V:fff r2sin0drdode.
14

Evaluating the integral:

V= frdrf sdeH d¢7
R3
Vz( 3 )X( cos@| ) x 271,

R3 R3 4
V=" x(1+1)x21=— x2x 21 = —nR5.
3 3 3

16



Chapter II: Electrostatics

4. Elementary Electric Charges

The electrical properties of matter originate at the atomic level. Matter is composed
of atoms, each consisting of a nucleus around which a cloud of electrons orbits. These
electrons repel each other but remain positioned around the nucleus. The nucleus consists
of protons, which carry positive charges, and neutrons, which are neutral. The set of
particles forming the nucleus is called nucleons.

Electrons and protons carry the same electric charge in absolute value, denoted by e.
This electric charge, known as the elementary charge, has a value of:

e=1.602x10"°C 4.1)

The electric force acting between positively charged protons and negatively charged
electrons is responsible for the cohesion of atoms and molecules. The total charge of
non-ionized atoms (i.e., those that have neither lost nor gained electrons) is zero.

An electric charge cannot take arbitrary values; it is always an integer multiple of the
elementary charge:

Q=+ne (C) (4.2)

This expresses the fundamental principle of charge quantization.

5. Electrification Experiment

When a glass rod is rubbed with a piece of silk and brought close to small pieces of paper,
the paper pieces are attracted to the rod, indicating that electrons have been removed from
the rod.

5.0.1 First Experiment

A small ball made of elderberry wood or polystyrene is suspended by a thread. A glass or
amber rod, previously rubbed, is brought near the ball. Each rod first attracts and then
repels the ball after contact (Figure 2.1a). However, if both rods are brought close to the
ball simultaneously, nothing happens (Figure 2.1b).

5.0.2 Second Experiment

If two balls are electrified by contact with a rubbed glass rod, they repel each other.
However, if each ball has touched different rubbed rods made of different materials, they
attract each other.

These experiments demonstrate the existence of two states of electrification, corre-
sponding to two types of electric charges: positive and negative. We recall the fundamental
rule:

17
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Electrification experience

Two bodies with the same type of charge repel each other, while bodies with
opposite charges attract each other.

6. Coulomb’s Law

Consider two point charges g1 and g9 placed in a vacuum. The first exerts a force propor-
tional to q1 on the second, and vice versa. The force between the two charges, known as
electrostatic force, is proportional to the product of their charges:

F.-k 12y, (6.3)
r

where r is the distance between the two charges, and K is given by:

18



1

= , with €p=8.854x10"2 F/m (6.4)
4me

Application: Calculate the force exerted by charge g1 =3 x 1072 C on charge g2 =
—5x 107* C separated by a distance of 20 mm.
Solution:

3x1073)(-5x 1074
9192 _ g, 109 Bx10 (5> 107) (6.5)

F=K
r2 (20 x 1073)2

F=33.75x10° N (6.6)

7. Superposition Principle

Consider a charge g at point M in the presence of other charges q; located at points M;.
The force F acting on charge q is:

F=) K25 Uin (7.7)
t i

Application: Compute the resultant force acting on q3 due to g1 and qs.

8. Electrostatic Field

An electric field exists at a point in space if a test charge gg at that point experiences an
electrostatic force Fe such that:

F
E==—2 (8.8)
q0

8.1 Electric Field of a Point Charge

A charge @ at point O creates an electric field at any point M given by:

K
EM)= r_QQUOM 8.9)

9. Electrostatic Potential

9.1 Electric Potential

The work required to move a charge g from point A to point B in an electric field is:

B
Wag =q0f E-dl (9.10)
A

The electric potential difference is defined as:

19



B
UAB:VB_VA:_f E-dl 9.11)
A

9.2 Potential of a Point Charge

For a charge @ at point O, the electric potential at a distance r is:

Vng (9.12)

assuming V =0 at infinity.

10. Electrostatic Potential of continuous charge distribution

The potential at a distance r from a charge ¢ is given by:

V(r)= I% (10.13)

The potential remains constant on spheres of radius r centered around the charge q,
which are called equipotential surfaces.
10.1 Potential Created by Multiple Distinct Point Charges

We start from the relationship between the electric field E and the potential V, more
precisely from the differential relation:

dV =EWM)-dl

For a set of charges g;, concentrated at point M, and using the superposition theorem:
— N - N -, N
dV=-EM)-dl=- Z[Ei(M)]-dl = Z[—Ei(M)]-dl = ZdVi
i=1 i=1 i=1

The sum of a set of differentials being the differential of the sum:
N N
dv=> dv; :d(ZVi)
i=1 i=1
VM) = ﬁv- __1 s (10.14)
S Ameo S .

Where r; is the distance between ¢; and point M. The charge ¢; can be positive or
negative, which is why it must be taken with its sign.

20



Proof. Using the relationship between the electric field E and potential V', we obtain:

Kq;

ri

V(M) = Z

(10.15)

where r; is the distance between charge q; and point M. The charges q; can be positive

or negative.

10.2 Potential Due to a Continuous Charge Distribution

For a continuous charge distribution, integration is used:

V(M):deTq

10.2.1 Volume Distribution

V(M)=Kfff@

where p is the volume charge density.

10.2.2 Surface Distribution

won -

where o is the surface charge density.

10.2.3 Linear Distribution
Adl

r

V(M):Kf

where A is the linear charge density.

O

(10.16)

(10.17)

(10.18)

(10.19)

Here is the combined and corrected translation of the text from the images into English,

rewritten in LaTeX:

**¢) If the distribution is linear:**

Adl

ViM)=| —— UII-26)

c 4negr

where A is the linear charge density.

21



10.3 Applications:
10.3.1 Field and Potential Created by a Ring:

A ring with center O and radius R carries a charge ¢ uniformly distributed with a linear
charge density 1 > 0.

1. Calculate the potential created at point M on the axis Oy located at a distance y
from O. 2. Deduce the electric field vector at point M.

10.3.2 Solution:

For the given point M, the quantities r, y, and R are constant. Starting from Figure 1.8

. _ 1 . .
and setting K = Tneg» We can write:

d
dav =4
r

Integrating over the entire charge distribution:

K K
de:—qu:V:—q+Coo
r r

From the figure, we can see that:

r=1/R2+y2

After substituting K and ¢ = 1-27R, we arrive at the expression:

A R

——+C
20 JRZ+y2

Now, to determine the magnitude of the electric field E, we differentiate the expression
for V with respect to y, using the relation:

. -~ AR y
F--YL gt Y g
dy 2e0 (R? +y2)3/2u

10.3.3 Field and Potential Created by a Disk:

Consider a disk with center O and radius R, uniformly charged on its surface. The surface
charge density is o (g > 0) Figure 14.

1. Calculate the electric field and the potential created by this distribution at a point
M on the axis (Oz).

To do this, we decompose the disk into rings of radius p and width dp. Let P be a point
on the ring and P’ the symmetric point of P with respect to O.

First, let’s examine the symmetry of the problem: the distribution has a revolution
symmetry around the axis OZ. Any plane containing the axis OZ is a plane of even
symmetry for the distribution. Therefore, the electric field E at a point M on the axis 0Z
is directed along E:

22



E =keoln: KdR

b (ZrE)"

E. = ko2m|1 - —mee | T/
"+ R

I s

Coulamis " ——

i, e (R O_r oS

k=

Potential Created by a Disk

E(M)=E(0,0,Z)=E(Z)k

A charge element dg = o ds, centered at P (Figure II-9), creates at a point M on the
axis of the disk an elementary field dE given by:

where ds=pdpdf and r = \/p? + Z2.
The charged disk has a revolution symmetry around its axis, for example, the axis ZZ,

so the field is directed along this axis. We have:

o o pdpd@
47eq p2 ke

- o dpdo >
dEz =dEcosa = p p2 cosak
dmey p2+2Z2

The total electric field at point M is obtained by integrating over the entire disk:

EM)=

R 21
7 f pdpdo cosa
0 Jo

47eq p2+272

Since cosa = %, we have:

27 bdpdo VA
EM) = ff SN
4meg p2+Z p +Z2
Ean =2 (Z z )zz
2e0 \|Z| VR2+2Z2

When Z is large, the field weakens. However, when R > Z, and M is very close to the
disk, the field becomes:

EM)=+"F
260

23



The potential at point M is derived from the field by integration:

av -

EM)=-VV(M) = —d—Zk

Thus,

2 (2- VR 7

- 260

11. Electrostatic Energy

11.1 Energy of a Point Charge in an Electric Field

The work done to move a charge ¢ from A to B in an electric field E is:
Wap =q(Va—Vp) (11.20)

11.2 Energy of a System of Point Charges

The total electrostatic energy W of a system of point charges is given by:

1
W= EZqui (11.21)
i

11.3 Energy of a Continuous Charge Distribution

W = %ff[deV (11.22)

12. Electric Dipole

12.1 Definition

An electric dipole consists of two equal and opposite charges separated by a small distance.
The dipole moment p is given by:

P=qa (12.23)

12.2 Potential Created by a Dipole
The potential at a point P due to a dipole is:

V= Kp;zosg (12.24)
r

24
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Electric Field of a Dipole

12.3 Electric Field of a Dipole
The radial and angular components of the electric field are:

_ Kp(2cos0)

E, - (12.25)
r
Kpsind
Eg= —p:;n (12.26)

13. Gauss’s Theorem

13.0.1 Objectives:

To be able to quickly provide the expression for the electrostatic field created by a source
with a high degree of symmetry.

13.1 Prerequisites:

By drawing two networks of lines on any surface, the surface is decomposed into smaller
areas bounded by these lines (see the figure).

If the lines are very numerous and evenly distributed, each of these areas has a very
small surface. Consider a point P on the surface S. If the number of lines increases
indefinitely, the small area around the point P decreases and tends to approach the portion
of the tangent plane at P to the surface S. In the limit, its area d.S becomes infinitely small
and coincides with a portion of the plane. It is called the surface element surrounding the

25



Gauss’s Theorem

point P. Thus, any surface S can be considered as the juxtaposition of an infinite number
of surface elements dS.

13.2 Surface Element:

Consider a surface element of area dS.

We associate with this element a vector called the "normal" vector dS , defined as
follows:

- Its origin is a point P on the element. - Its direction is normal to the surface. - Its
magnitude is equal to the area dS.

The vector dS is therefore infinitely small. Its orientation is chosen arbitrarily (outward
for closed surfaces). To orient dTS, one can also use the "corkscrew" rule. The contour C
bounding the surface is oriented by arbitrarily choosing a positive direction of traversal.
The vector dS is oriented according to the progression of a corkscrew turning in the
direction of C.

13.3 Gauss’s Theorem:

Gauss’s theorem relies on the concept of the flux of a vector. This new concept is introduced
in what follows. However, a good mastery of elementary vector operations, particularly the
dot product, is necessary.

14. Concept of Flux

Let E denote the electric field vector at point P. Let dS be the surface element surrounding
this point and the corresponding vector.

26



Electric
field

Concept of Flux

14.1 Definition:

By definition, the flux d® of the electric field E through the considered surface element
dS is equal to the dot product:

d®=E-dS

This is called the elementary flux to indicate that it is relative to a surface element.

14.2 Sign of the Flux:

The sign of the flux depends on the direction of the vector dS. Consider, for example, the
two opposite vectors dS and —dS, associated with a surface element.

If the vector dS makes an angle 6 with the electric field E, the vector —dS makes
an angle 7 — 6, and since cos(7 — ) = —cos(6), the dot products E-dS and E -(-dS) have
opposite values.

To calculate the algebraic flux of the electric field E through a surface element dS , it is
therefore necessary to choose, in accordance with the concept of positive flux, the direction
of the vector dS associated with this element.

The flux of an electric field E through a closed surface S is given by:

Qenc
€0
where Qcn is the total charge enclosed by the surface.

(D:fE,dS: (14.27)

14.3 Flux Calculation

Consider the surface elements composing the surface S. For each of them, the elementary
flux d® is calculated. The total flux ® of the electric field through the surface S is obtained
by summing the elementary fluxes. This sum is conventionally denoted by the notation:

@:ffﬁ]-d§
S
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To perform this calculation, the vectors dS associated with the surface elements are
all oriented on the same side of the surface S.

14.4 Flux of a Point Charge

Let P be a point belonging to the surface element dS. The field E created at P by the
charge q is directed along 7 and oriented from g to P if ¢ > 0; its magnitude is:

1 g¢q

E=
4meqg r?

where r is the distance between g and P.
The elementary flux of this electric field through the surface element dS surrounding
the point P is:

d®=FE-dS =EdS cosf

where 6 is the angle between E and dS.

However, dQ = % is the solid angle d() subtended by the contour of dS as seen

from g (geometrically, it is a cone with vertex at q that is tangent to the surface element
ds).

Gauss’s Theorem

Gauss’s theorem is stated as follows:

14.5 Theorem:

The flux of the electric field through any closed surface S is equal to % times the total
algebraic charge contained within the volume bounded by this surface:

Qint

@:f}?-d§:
S €0

14.5.1 Case of Charges Outside a Closed Surface S:

The elements d.S 1 and d§2 are seen under the same solid angle d{) in absolute value.
However, E 1 and dS 1 are collinear, while Eg and dS 9 are opposite. Therefore, the fluxes
d®; and d®9 have opposite signs. The elementary fluxes cancel out in pairs, and the total
flux of the field E created by the charge g outside the closed surface is zero.

14.5.2 Case of Charges Inside a Closed Surface S:

The sum of the elementary fluxes will not be zero because all the surface element vectors
are, for example, all oriented outward from the surface. The total flux sent by g through S
will be the sum of the elementary fluxes:
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Case of Charges Inside a Closed Surface

®= yf E.aS=2L
S €0
The unit of solid angle is the angle that subtends a unit area on a sphere of unit radius.
Since the surface area of a unit sphere is 4, the solid angle that subtends the entire space
from a point is 47. The sum extends over the entire space, i.e., 47.

If there are N charges q; inside S:

1N

Y qi

@:fé.m:
S €0,-1

By defining:

N
Qint = Z qi
i=1

The flux of E through a closed surface is equal to % times the sum of the interior
charges, regardless of the exterior charges.

14.6 Application of Gauss’s Theorem:

The application of Gauss’s theorem is very useful in problems that exhibit a high degree of
symmetry. Verify this property with the simple example of the field E created by a point
charge q.

The following two simulations will allow you to apply Gauss’s theorem in the case of two
uniformly charged structures with axes of symmetry. You can demonstrate the simplicity
with which Gauss’s theorem allows the calculation of the electrostatic field created by these
two charge distributions, which exhibit a high degree of symmetry.

14.7 Methodology

Gauss’s theorem is a valuable tool for determining the electric field E at any point P when
the source charges exhibit high symmetry. The steps for calculating E are as follows:
1. Determine the orientation of the field using symmetry considerations.
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2. Choose a "Gaussian surface" S (imaginary, with no physical reality): - Passing
through the point of interest P. - Most suitable for simplifying the expression of the flux of
E through it. - Possessing the same symmetry properties as the source. - Not coinciding
with a charged material surface.

3. Express the flux @ through the closed surface S.

4. Determine the total charge Qint enclosed within the volume bounded by S.

5. Apply Gauss’s theorem:

Qint

€0

cp:fé.dg:
S

If the Gaussian surface is well chosen, the left-hand side of the equation is a simple
function of E and the distance r. Thus, the expression for the field E can be obtained as a
function of the distance r and the source charges.

14.7.1 Case of axial symmetry

A source charge distribution has axial symmetry if the charge density at a point is a
function only of the distance from an axis.
Cylindrical Charge Cloud with Volume Density p = f(r):

Case of axial symmetry

1. By symmetry, the electric field is radial (far from the edges of the source).

2. The most suitable Gaussian surface is a cylinder aligned with A and passing through
the point of interest M (which can be inside or outside the source).

Point of Interest Outside the Source:

On the right sections S of the Gaussian cylinder Sg, the vectors E and dS are orthogo-
nal, so the flux of E through S is zero. The flux of E through the closed Gaussian surface
is reduced to the flux through the lateral surface.

cp:ff E‘-d§:/ E.d§+ffﬁ.d§:f F-d§
Sg Slat S Slat

On the lateral surface, E and dS are collinear, so the flux reduces to:
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q):ff E‘-d§=[ E-dS
Slat Slat

E is the same at every point on S, and can therefore be taken out of the integral:

d):ff E-dS=E dS =ESia
Slat Slat

The lateral surface area of the Gaussian surface is equal to 27rh:

O=FE 2arh

Now, we only need to evaluate the charge @; inside the volume delimited by S,
according to the considered distribution. Gauss’s theorem allows us to determine the field
E by writing:

Qi

O=F -2nrh=—
€0
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15. Capacitance

The capacitance C of a conductor is defined as the ratio of the charge @ stored on the
conductor to the electric potential V of the conductor:

Q
C==
\%

The unit of capacitance is the farad (F), where 1F = 1C/V (one farad equals one coulomb

per volt).

Plate
area A

Electric
field E
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The Capacitance

_9Q
C= % (15.28)

For a few common conductor geometries, the capacitance is given by:

1. Isolated Spherical Conductor of Radius R:
C=4neggR
where € is the permittivity of free space.

2. Parallel Plate Capacitor with Plate Area A and Plate Separation d:

<A
- d

where € = g¢¢, is the permittivity of the dielectric medium.

C

3. Cylindrical Capacitor with Inner Radius R, Outer Radius Rg, and Length L:

B 2mel
" In(Ry9/R1)

32



The capacitance C of a conductor is defined as:
For a spherical conductor:

Spherical conductor

C=4n €0R
For a cylindrical capacitor:

Gaussian surface

——

et e

r
+ 4] _
I \+ +
/4_’ S |

/+;\\_’+ + + + + +y

Cylindrical capacitor

2megh

" In(Ry/R1)
For a parallel plate capacitor:

15.1 Energy Stored in a Capacitor

The energy stored in a capacitor is given by:
1
W=—-CV?
2
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