1st year: **GP-GC-GM**

Practical Work N°3. Determination of the enthalpy heat of the dissolution ΔH_{diss}

Enthalpy

The enthalpy of dissolution, often known as the heat of dissolution, refers to the amount of heat released or absorbed when 1 mole of a substance completely dissolves. The enthalpy of solution (Δ Hsolution) can be positive when heat energy is absorbed (endothermic) or negative when heat energy is released (exothermic).

$$\Delta H_{diss} = \frac{Q}{n}$$

Where

• ΔH_{diss} : The enthalpy of dissolution

• **Q**: The heat energy

• **n**: The number of moles

Objective of the experiment

In this practice, the objet is to determine the enthalpy of dissolution in water of sodium hydroxide, potassium hydroxide and ammonium chloride by calorimetry.

How to calculate

Since the system is isolated then

$$\sum Q_i = 0$$

$$Q_{\text{gained}} + Q_{\text{lost}} = 0$$

$$Q_{\text{cold water}} + Q_{\text{substance}} + Q_{\text{calorimeter}} = 0$$

Materials and Chemicals

Materials	Chemicals	
Calorimeter with mixer	Distilled water	
• Thermometer	 Potassium hydroxide (KOH) 	
• Becher	 Ammonium chloride (NH₄Cl) 	
 Analytical balance 		

Procedure

Experiment 1

- 1. Take a becher and ignore its weight before filling it with $m_1=100$ g of cool water.
- **2.** Put the cold water into the calorimeter.
- **3.** Close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + calorimeter), let it be T_1 .
- **4.** Weigh **5,61g** of **KOH**, and then put it into the calorimeter.

- **5.** Close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + product + calorimeter), let it be T_{eq} .
- **6.** Record the obtained results in a table.

Experiment 2

- 1. Take a becher and ignore its weight before filling it with $m_1=100$ g of cool water.
- **2.** Put the cold water into the calorimeter.
- **3.** Close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + calorimeter), let it be T_1 .
- 4. Weigh 5,34 g of NH₄Cl, and then put it into the calorimeter.
- **5.** Close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + product + calorimeter), let it be T_{eq} .

Questions

1. Record the obtained results in a table.

Product	Mass of Cold	Mass of substance	Temperature of	Equilibrium
	Water $m_1(g)$	$m_2(g)$	Cold Water $T_1(K)$	Temperature $T_{eq}(K)$
КОН				
NH ₄ Cl				

- 2. Calculate the number of moles of **KOH**, and **NH4Cl** put in the calorimeter.
- **3.** Calculate $Q_{\text{substance}}$ for both KOH, and NH₄Cl.
- **4.** Calculate the enthalpy ΔH_{KOH} and ΔH_{NH4Cl} .
- 5. Predict the dissolution reaction type for **KOH** and **NH₄Cl** and justify your answer.

Given:

 $K_{cal} = 61.50 \text{ J} / K$; $C_{H2O} = 4.184 \text{ J} / g$. K; $M_{KOH} = 56.11 \text{ g/mol}$); $M_{NH4Cl} = 53.49 \text{ g/mol}$);