Chapter 2:Grammars

Plan

- 1. Definitions
- 2. Derivation and Generated Language
- 3. Derivation Tree
- 4. Chomsky Hierarchy

Definition

- A grammar **G** is a quadruple (V_N, V_T, S, R) where:
- V_N represents a finite set called the non-terminal vocabulary.
- V_T represents a finite set called the terminal vocabulary ($V = V_N U V_T$).
- S: The initial symbol or axiom, which is an element of V_N .
- R is the finite set of rules, R ⊆ (V\V_T) × V*, where a rule r ∈ R is noted as:
 - Left side \rightarrow Right side.

 $\alpha(r) \rightarrow \beta(r)$

Définition

- Let $G = (\{S\}, \{0,1\}, S, \{S \rightarrow 0S1, S \rightarrow 01\}).$
- **G** is a Chomsky grammar.
- There are multiple ways to represent the rules of a Chomsky grammar.

Couples	Dérivation	BNF
(α,β)	$\alpha \rightarrow \beta$	$\alpha ::= \beta \mid \gamma$
(α,γ)	$\alpha \rightarrow \gamma$	

Notation

- When multiple production rules of a grammar share the same left-hand side, they can be factorized by separating the right-hand parts with vertical bars.
- Example: Instead of writing:

• $A \rightarrow a A \text{ and } A \rightarrow \varepsilon$, we write: $A \rightarrow a A \mid \varepsilon$.

Derivation

 A word y is immediately derived from a word x if and only if there exists a rule r and two words g and d from V* such that:

 $x \xrightarrow{r} y \qquad x = g\alpha(r)d \text{ et } y = g\beta(r)d.$

- Notation: \Rightarrow represents the reflexive and transitive closure of the relation \rightarrow .
- The relation \Rightarrow is called **derivation**.
- We denote **r** as the sequence of rules allowing **y** to be derived from **x**. \hat{r}

$$x \stackrel{r}{\Rightarrow} y$$

Exemple

- Consider the grammar G = ({ a,b },{S,T},S,{S → aS | aT, T → bT |b}).
- It generates the words **abb** and **aab** because:
 - $\circ S \to aT \to abT \to abb$
 - $\ \ \ S \rightarrow aS \rightarrow aaT \rightarrow aab$

The generated language consists of all words over $\{a, b\}$ of the form $a^m b^n$ with m, n > 0.

Language generated by a grammar

- The language generated by a grammar **G**, denoted **L**(**G**), is the set of terminal words derivable from **S**.
- Formally:
 - **Example:** The word **000111** (noted as $0^{3}1^{3}$) is a word in the language generated by the grammar G.
 - Given two rules $\mathbf{r_1}$ and $\mathbf{r_2}$:
 - $0^{3}1^{3}$ is derived from S by applying r_{1} twice and r_{2} once.

$$L(G) = \left\{ x \in V_T^* / \exists \hat{r} \in R^+, S \stackrel{\hat{r}}{\Rightarrow} x \right\}$$

Example

- 000111 (also 0³1³) is a word from the language generated by the grammar G of the previous example
- Let the two rules r1 and r2 be such that

$r_1: S \rightarrow 0S1 \text{ et } r_2: S \rightarrow 01.$

- Therefore : 0³1³ is derived from S by applying the rule r1 twice, then applying the rule r2 once..
- We will have: *S*

$S \xrightarrow{r_1} 0S1 \xrightarrow{r_1} 00S11 \xrightarrow{r_2} 000111$

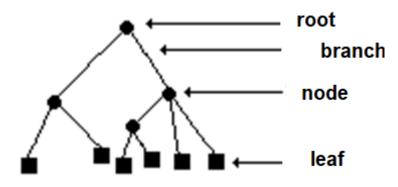
Derivation tree of a word

Let the grammar G, $G = (V_N, V_T, S, R)$. A labeled tree is a 'derivation tree' in G if and only if:

- The alphabet of labels is included in V_N and V_T .
- The nodes are labeled by elements of V_N .
- The leaves are labeled by elements of V_T.
- L'étiquette de tout noeud est un élément d'The label of any node is an element of V_N .
- For each node $\langle \mathbf{A}, f_1, f_2, \dots, f_n \rangle$ a rule R is associated, which has the form: $\mathbf{A} \rightarrow f_1 f_2 \dots f_n$ (derivation rule in G)

Derivation tree of a word

- A derivation tree is traditionally drawn with the root at the top. On such a drawn tree, the derived word is obtained by concatenating the labels of the leaves from left to right.
- Graphical representation of a tree



Examples

• The grammar G is as follows

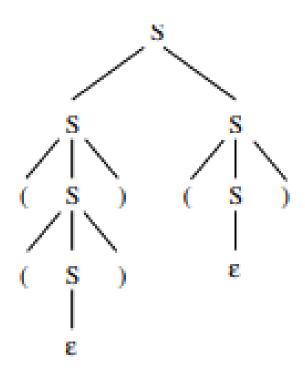
 $S \rightarrow \epsilon, S \rightarrow SS, S \rightarrow (S)$

 The terminal letters are (and) and S is a non-terminal letter, which is also the axiom of the grammar. For example, the word (())() is obtained by:

$$\begin{array}{rcl} S
ightarrow SS &
ightarrow & (S)S \ &
ightarrow & ((S))S \ &
ightarrow & ((\varepsilon))S = (())S \ &
ightarrow & (())(S) \ &
ightarrow & (())(\varepsilon) = (())(). \end{array}$$

Examples

• Derivation tree of the word (())():



Different types of grammars

• A grammar is said to be of type 3 (linear, regular) if and only if every production $\alpha \rightarrow \beta$ is either of the form A \rightarrow aB, with a in X and A, B in N, or of the form A \rightarrow a.

• Formally:

$- \forall r \in R \ \alpha(r) \in V_N et \ \beta(r) \in V_T V_N \cup V_T$

• A grammar is said to be of type 2 (context-free, algebraic) if and only if:

 $-\forall r \in R \ \alpha(r) \in V_N$

Different types of grammars

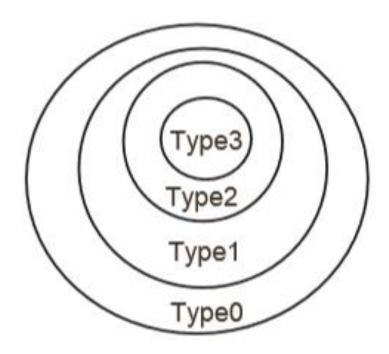
- A grammar is said to be of type 1 (context-sensitive, or monotonic) when it introduces a first restriction on the form of the rules, by requiring that the right-hand side of each production be necessarily longer than the left-hand side.
- Formally: $-\forall r \in R |\alpha(r)| \leq |\beta(r)|$
- A grammar with no restrictions on the rules is said to be of type 0.
- Note: Usual programming languages generally have a type 2 grammar.

Type ?

1. G1<{a,b}, {S,A,B}, P,S> où P: { S \rightarrow AS / bB A \rightarrow a / ε B \rightarrow aB / a / ε } 2.G2<{a,b,c},{S,A,B,C, },P,S> où P: $S \rightarrow aSSB \mid ASC \mid a,$ $A \rightarrow AAB \mid B \mid C,$ $B \rightarrow a \mid \epsilon,$ $C \rightarrow AC \mid CB$

Different types of grammars

• There is an inclusion relation between the types of grammars according to the following figure:



Type d'un langage

- The type selected for a grammar is the smallest one that satisfies the conditions.
- To determine the class of a language, the following procedure is followed:
- Look for a type 3 grammar that generates it; if it exists, the language is of type 3 (or regular).
- If not, look for a type 2 grammar that generates it; if it exists, the language is of type 2 (or algebraic).
- If not, look for a type 1 grammar that generates it; if it exists, the language is of type 1 (or context-sensitive).
- Otherwise, the language is of type 0.

Exercices

• Give, without proof, the languages generated by the following grammars. State, each time, which type the grammar is:

$$-G = (\{a\}, \{S\}, S, \{S \to abS | b\});$$

$$-G = (\{a\}, \{S\}, S, \{S \to aSa | \epsilon\});$$

$$-G = (\{a\}, \{S\}, S, \{S \to aSb | \epsilon\});$$

$$-G = (\{a,b\}, \{S\}, S, \{S \to aSa | bSb | \epsilon\});$$

 Give the grammars that generate the following languages: Binary numbers;

Words over $\{a, b\}$ that contain the factor 'aa'.