Chapter 3 Finite State Automata

Plan

- 1. Deterministic Finite Automata (AEF)
- 2. Representations of an Automaton
- 3. Equivalent and Complete Automata
- 4. Non-Deterministic Finite Automata (Determinization)
- 5. Generalized Automata

Deterministic Finite State Automaton

Definition:

A simple and deterministic finite state automaton is a 5-tuple,

denoted as $\mathcal{A} < X$, S, S₀, F, $\mathbb{I} >$, where:

- X : An alphabet,
- S : The set of states of the automaton,
- $\mathsf{S}_{\mathsf{0}}: S_0 \in S$ is the initial state,
- F : $F \subseteq S$ is the set of final states,
- ${
 m I}$: The set of instructions (transitions) ${
 m I}:S imes X o S$ (single-letter reader).

Principle

- The elements of I are triplets, denoted as (Si, xi, Sj) where Si, Sj ∈ S and xi ∈ X.
- i.e., if the automaton is in state Si, and under the reader's head there is the letter xi, then the automaton transitions to state Sj.

Representation of the Set of Instructions

• Matrix Representation :

	X ₁	x ₂	 x _i	 $x_n \in alphabet$
S ₀				
S ₁				
S _i			S _j	
$S_k \in S$				

Representation of the Set of Instructions

- Graphical representation:
- Initial state:

Represented by S_0 with an incoming arrow.

Simple state:
 Represented by S_i.

Si

Final state:

Represented by S_f with a double circle.

• A transition:

Represented as $S_i \xrightarrow{x_i} S_j$, meaning that from state S_i , the automaton transitions to state S_j upon reading input x_i .

Example

- Let $\mathcal{A} < X, S, S0, \mathbb{F}, \mathbb{I} >$ be a final state automaton such that:
- $S = \{S_0, S_1, S_2, S_3, S_4, S_5\}$
- $\mathbb{F} = \{S_0, S_2, S_4\}$
- $\mathbb{I} = \{(S_0, a, S_0), (S_0, b, S_1), (S_1, b, S_0), (S_1, a, S_2), (S_2, a, S_2), (S_3, b, S_0), (S_4, b, S_5), \}$

Example

	а	b
S ₀	S ₀	S_1
S ₁	S ₂	S ₀
S ₂	S ₂	-
S ₃	-	S ₀
S ₄	-	S_5
S ₅	-	-

Definition

- Given $\mathcal{A} < X, S, S_0, F, \mathbb{I} >$ is a finite state automaton and let $\omega = \omega_1 \omega_2 \dots \omega_n$ be a word in X^n where $\omega_i \in X$. We say that $\omega_1 \omega_2 \dots \omega_n$ is **recognized** by the automaton \mathcal{A} **if and only if** there exists a sequence of states in S, namely S_1, S_2, \dots, S_n , and there exists $S_f \in F$ such that:
 - $S_0 \stackrel{\omega_1}{\longrightarrow} S_1 \stackrel{\omega_2}{\longrightarrow} S_2 \dots S_{n-1} \stackrel{\omega_n}{\longrightarrow} S_n$ (successful path)
 - $S_0 \xrightarrow{\omega} S_f$

Accepted word

- A word is accepted by a finite automaton if and only if the word transitions the automaton from the initial state to the final state.
- If we have the automaton s_0 , then ϵ is accepted by the automaton (this is the empty path).
- Example: In the previous example:
 - Is $\omega = bab$ in $L(\mathcal{A})$?
 - $S_0 \xrightarrow{b} S_1 \xrightarrow{a} S_2 \xrightarrow{b}$ (blocked \Rightarrow not recognized by the automaton \mathcal{A}).

Language Recognized by a Finite Automaton

$L(\mathcal{A}) = \left\{ \omega \in X^*, \exists S_f \in F ext{ such that } S_0 \stackrel{\omega}{\longrightarrow} S_f ight\}$

Accessible Co-accessible states

Definition: Let A < X, S, S₀, F, I > be a finite automaton.
 A state S_i is said to be accessible if and only if

 $\exists \omega \in X^* \text{ such that } S_0 \stackrel{\omega}{\longrightarrow} S_i.$

Definition: Let A < X, S, S₀, F, I > be a finite automaton.

A state S_i is said to be co-accessible if and only if

 $\exists \omega \in X^*, \exists S_f \in F ext{ such that } S_i \overset{\omega}{\longrightarrow} S_f.$

Proposition:

Let $\mathcal{A} < X, S, S_0, \mathbb{F}, \mathbb{I} >$ be a finite automaton, and let \mathcal{A} ' be the automaton obtained from \mathcal{A} by removing **nonaccessible** and **non-co-accessible** states, along with their incoming and outgoing transitions. We have $L(\mathcal{A}) = L(\mathcal{A}')$.

Example

États accessibles	а	b
So	S ₀	S_1
S ₁	S ₂	S ₀
S ₂	S ₂	-

États coaccessibles	а	b
So	S ₀	S ₁ , S ₃
S ₂	S ₁ , S ₂	-
S ₄	-	-
S ₃	-	-
S ₁	-	-

accessibles
$$S = \{S_0, S_1, S_2\}$$

co-accessibles $S = \{S_0, S_1, S_2, S_3, S_4\}$

State

 $\mathcal{A}' \sim \{S_0, S_1, S_2\}$ а b ★ S₁ } а S₂ S₀ h $L(\mathcal{A}) = L(\mathcal{A}')$

Complete Automaton

• Definition:

A finite automaton is said to be **complete** if and only if

Proposition: For every automaton $\mathcal{A} < X, S, S_0, \mathbb{F}, \mathbb{I} >$, there exists an equivalent complete automaton $\mathcal{A}' < X, S', S_0', \mathbb{F}', \mathbb{I}' >$ such that $L(\mathcal{A}) = L(\mathcal{A}')$.

Deterministic Automaton

A is said to be deterministic if and only if the transition function δ associates at most one state p to each pair (q, a), where a ∈ X and p, q ∈ Q.

Deterministic Automaton

$I\!\!I\colon S\,\times\,X\,\to\,S$

1.
$$\forall \ S_i, S_j, S_k \in S$$
, $x_i \in X$
If $S_i \stackrel{x_i}{\longrightarrow} S_j$ and $S_i \stackrel{x_i}{\longrightarrow} S_k$ then $S_j = S_k$.

2. The initial state is unique.

Non-deterministic Automaton

• $\omega = aaba \in L(\mathcal{A})$?

1)
$$S_0 \xrightarrow{a} S_1 \xrightarrow{a} S_1 \xrightarrow{b} S_0 \xrightarrow{a} S_0 \notin \mathbb{F}$$

2) $S_0 \xrightarrow{a} S_1 \xrightarrow{a} S_1 \xrightarrow{b} S_0 \xrightarrow{a} S_1 \notin \mathbb{F}$
3)
4) $S_0 \xrightarrow{a} S_0 \xrightarrow{a} S_0 \xrightarrow{b} S_1 \xrightarrow{a} S_2 \in \mathbb{F}$

Proposition: For every non-deterministic automaton A < X, S, S₀, F, I >, there exists an equivalent deterministic automaton A' such that L(A) = L(A').

Example

- $\omega = 1011 \in L(\mathcal{A})$?
- It is enough to find a successful path that processes this word.

Deterministic Automaton

	0	1
$\rightarrow S_0$	-	S_1S_2
# S ₁ S ₂	S_0S_1	S ₂
S ₀ S ₁	S ₁	S_1S_2
# S ₂	S ₀	-
S ₁	S ₁	S ₂

Example

• Make the automaton ${\mathcal A}$ deterministic and then complete it.

Generalized Automata

 In a generalized finite state automaton , transitions (labels) can be generated by words. Transitions caused by the word E are called spontaneous transitions (Etransitions), which represent a state change without reading any input..

Partially Generalized Automaton

In a partially generalized finite state automaton (AEF), transitions (labels) are generated by a single symbol from the alphabet or by ε .

Simple Automata

 In a simple AEF, transitions (labels) are always generated by one and only one symbol of the alphabet.

Generalized Finite State Automata

• Definition:

A generalized automaton is a 5-tuple $\mathcal{A}G < X^*, S, S_0, \mathbb{F}, \mathbb{I} >$, where $\mathbb{I} \subseteq S \times X^* \times S$.

- The transitions in a generalized automaton are of three types:
- -Transitions caused by letters of **X**.
- -Transitions caused by words of length >1.
- -Transitions caused by the empty word (**spontaneous transition**).

- $\omega = abcd \in L(\mathcal{A})$?
- $S_0 \xrightarrow{ab} S_0 \xrightarrow{cd} S_1 \xrightarrow{\epsilon} S_2 \in \mathbb{F} \Rightarrow S_0 \xrightarrow{abcd} S_2 \Rightarrow abcd \in L(\mathcal{A})$

Generalized Finite State Automata

• Theorem:

For each generalized finite automaton (AEF) $AG < X, S, S_0, \mathbb{F}, \mathbb{I} >$, there exists a simple and deterministic finite automaton (AEF) AS < X, SS, $S_0S, \mathbb{F}S, \mathbb{I}S >$ that recognizes the same language.

Construction of the partially generalized automaton

• Elimination of words containing at least two letters:

For each transition with a word $\boldsymbol{\omega}$, such that $|\boldsymbol{\omega}| = \mathbf{n}$, with $\mathbf{n} \ge 2$, create \mathbf{n} -1 additional states and add transitions that connect these states with the letters of $\boldsymbol{\omega}$. At the end of this step, we obtain a **partially generalized finite automaton (AEF).**

Construction of the partially generalized automaton

Construction of the Partially Generalized Automaton:

- $\mathcal{APG} < X \cup \{\epsilon\}, S', S0', \mathbb{F}, \mathbb{I}' >$
- At initialization: $\mathbf{I}' = \mathbf{S}' = \mathbf{S}$

For each instruction of $I (S_i, x, S_j)$ where $x \in X^*$

• If
$$|x|=0$$
 or $|x|=1$, then $(S_i,x,S_j)\in\mathbb{I}'$

• If
$$|x|>1$$
, then $(x=x_1x_2\dots x_n, x_i\in X)$
Add to \mathbb{I}' : (S_i,x_1,S_{I1}) (S_{I1},x_2,S_{I2})

 $\left(S_{I_{n-1}}, x_n, S_j
ight)$

We add (n-1) intermediate states $S_{I1}, S_{I2}, ..., S_{I_{n-1}}$ to $S' \Rightarrow$ $S' = S \cup \{S_{I1}, S_{I2}, ..., S_{I_{n-1}}\}$

Construction of the partially generalized automaton

Construction of the simple automaton

• Elimination of **E**-transitions:

The removal of these transitions gives us a simple DFA. To achieve this, we must first eliminate the transitions by ϵ

Rule 1

Rule 2

If $S_j \in \mathfrak{F}$ then S_i becomes a final state

Elimination of the first spontaneous transition

Elimination of the second spontaneous transition

