University center of Mila Institute of Science and Technology Dr.Chellouf yassamine Analysis 2

Year: 2024/2025 Department of informatics Email:y.chellouf@center-univ-mila.dz 1^{st} Year

Exercises Serie N° 3

Note: questions marked (*) left to the students

Exercise 1

Solve the following first-order differential equations:

1.
$$y' - 2xy = (1 - 2x)e^x$$
, $y(0) = 5$:

3.
$$xy' + (1+x)y = 0$$
, $y(1) = 1$;

$$5 \quad y' - 2xy = e^{x^2} \sin x \quad y(0) = 1$$

$$7 \quad mu' + u = m \quad u(2) = 0$$

9.
$$y' - \left(2x - \frac{1}{x}\right)y = 1$$
, on $]0, +\infty[$; 10. $(1+x)y' + xy = x^2 - x + 1$, $y(1) = 1 \cdots (*)$
11. $xy' + 3y = x^2y^2$; 12. $y' + 2xy = -xy^4$.

11.
$$xy' + 3y = x^2y^2$$
;

13.
$$xy' - y = y^2 \ln x \cdots (*)$$

2.
$$2x + yy' = 0$$
, $y(1) = 1$.

4.
$$(4-x^2)yy' = 2(1+y^2)$$

6.
$$y' - y \cos x = \cos x$$
, $y(0) = 0 \cdots (*)$

1.
$$y' - 2xy = (1 - 2x)e^x$$
, $y(0) = 5$;
2. $2x + yy' = 0$, $y(1) = 1$.
3. $xy' + (1+x)y = 0$, $y(1) = 1$;
4. $(4-x^2)yy' = 2(1+y^2)$.
5. $y' - 2xy = e^{x^2} \sin x$, $y(0) = 1$;
6. $y' - y \cos x = \cos x$, $y(0) = 0 \cdots (*)$
7. $xy' + y = x$, $y(2) = 0$;
8. $y' - 2y = -\frac{2}{1 + e^{-2x}}$, $y(0) = 2$.

10.
$$(1+x)y' + xy = x^2 - x + 1$$
, $y(1) = 1 \cdots (*)$

12.
$$y' + 2xy = -xy^4$$

Exercise 2

Consider the following differential equation:

$$(x^2 - 3x + 2)y' - y^2 + 3xy = 4x^2 - 6x + 4 \cdot \dots \cdot (E)$$

- 1. Show that y = 2x is a particular solution of the equation (E).
- 2. Solve the equation (E) on $]2, +\infty[$.

Exercise 3

Solve the following second-order differential equations:

1.
$$y'' + y' - 6y = 4e^x$$
, $y(0) = 1$, $y'(0) = -22$.

2.
$$y'' - 3y' + 2y = (1 - 2x)e^x$$
.

3.
$$y'' - 2y' + 2y = 5\cos x$$
, $y(0) = 1$, $y'\left(\frac{\pi}{2}\right) = -2\left(e^{\frac{\pi}{2}} + 1\right)$.

4.
$$y'' + 4y = 2\sin x \cos x$$
.

5.
$$y'' - 4y' + 4y = xe^{2x}$$
, $y(0) = 1$, $y'(0) = 4$.

6.
$$y'' + 4y = e^{3x} \cos(2x)$$
.

7.
$$y'' - 8y' + 15y = 15x^2 - 16x + 17$$
, $y(0) = 3$, $y'(1) = 2(1 + e^3) \cdot \cdot \cdot \cdot \cdot (*)$

Exercise 4

Consider the equation: $y'' + 2y' + 4y = xe^x \cdot \cdot \cdot \cdot (E)$

- 1. Solve the homogeneous differential equation associated with (E).
- 2. Find a particular solution of (E), then give the set of all solutions of (E).
- 3. Determine the unique solution h of (E) satisfying h(0) = 1, and h(1) = 0.