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Chapiter 1: Mathematics Revision

1. Introduction: Mathematics Revision

This lesson provides a mathematical revision covering fundamental concepts essential for
physics and engineering applications. We will review the elements of length, surface area,
and volume in different coordinate systems, as well as important mathematical operators
and calculus techniques.

2. Elements of Length, Surface Area, and Volume in Differ-
ent Coordinate Systems

We will analyze the fundamental differential elements in the three primary coordinate
systems: Cartesian, cylindrical, and spherical. Understanding these elements is crucial for
evaluating integrals in physics and engineering.

2.1 Cartesian Coordinate System

A Cartesian coordinate system is defined by an origin point O and three mutually per-
pendicular axes (Ox,Oy,Oz). The unit vectors along these axes are i,j,k. Any point M in
space is represented by the position vector:

−→
R =−−→

OM = xi+ yj+ zk

Figure 1: Cartesian basis (a) Position vector and (b) elementary displacement and volume
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Example: Consider a straight-line motion along the x-axis where x = 2t, y= 3, and z = 0.
The velocity vector is given by:

v= d
−→
R

dt
= d

dt
(2ti+3j+0k)= 2i

Differential Length Element: The differential displacement is given by:

d
−−→
OM = d

−→
l = dxi+d yj+dzk

Differential Surface Element: The surface element depends on the plane of integra-
tion:

dSx = d ydz, dSy = dxdz, dSz = dxdy

Differential Volume Element: The elementary volume is given by:

dV = dx dydz

2.1.1 Cylindrical Coordinate System

In the cylindrical coordinate system (r,θ, z), a point is represented as:

x = r cosθ, y= rsinθ, z = z

It should also be noted that we can write:

up = cosθ i+sinθ j

and derive this vector with respect to θ:
We obtain:

dup = dθ (−sinθ i+cosθ j) ,

knowing that:
cos

(
θ+ π

2

)
=−sinθ and sin

(
θ+ π

2

)
= cosθ.

Thus:

dup

dθ
can be obtained by rotating up by an angle of

π

2
, and we can write:

dup

dθ
=uθ.

The position vector DM is written as:

DM= ρup + zk= (xi+ yj)+ zk,

7



Figure 2: Cylindrical base

where x and y are the Cartesian coordinates of the point M in the Oxy plane, given by:

x = ρ cosθ, y= ρ sinθ, and z = z.

The expression for the elementary displacement is:

dDM= dρup +ρdθuθ+dzk.

The expression for the elementary surface is:

ds = ρdρdθ.

Example: Find the velocity vector for a particle moving in a circular path where r = 2,
θ = t2, and z = 4t. The velocity components are:

vr = dr
dt

= 0, vθ = r
dθ
dt

= 2(2t), vz = dz
dt

= 4

Thus, the velocity vector is:
v= 0er +4teθ+4ez

Differential Length Element:

d
−→
l = drer + rdθeθ+dzez

8



Figure 3: Cylindrical coordinates

Differential Surface Element:

dSr = rdθdz, dSθ = drdz, dSz = rdrdθ

Differential Volume Element:

dV = rdrdθdz

2.2 Spherical Coordinate System

In the spherical coordinate system (r,θ,φ), a point is represented as:

x = rsinθ cosφ, y= rsinθsinφ, z = r cosθ

The position vector of point M in spherical coordinates, meaning in the spherical basis, is
written as:

−−→
OM = r−→ur = xi+ yj+ zk.

From the figure, we can express x, y, z in terms of r,θ,φ:

X =OM cosϕ= rsinθ cosϕ,

Y =OM sinϕ= rsinθsinϕ,

Z =OM cosθ = r cosθ.

Thus, we deduce:

−→ur = sinθ cosϕi+sinθsinϕj+cosθk.
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The unit vector −→uϕ at OM is written as:

−→uϕ = cosϕi+sinϕj.

This vector −→uϕ can be obtained either by replacing ϕ with ϕ+2π or by differentiating−→ur with respect to ϕ:

−→uϕ =−sinϕi+cosϕj.

This basis vector can also be expressed as the derivative of −→ur with respect to ϕ:

−→uϕ = 1
sinθ

∂−→ur

∂ϕ
.

The third basis vector in the spherical coordinate system is given by:

−→uθ = ∂−→ur

∂θ
.

2.2.1 Elementary Displacement:

d
−→
M = d(r−→ur)= dr−→ur + rd−→ur + r

∂−→ur

∂θ
dθ+ r

∂−→ur

∂ϕ
dϕ.

= dr−→ur + rdθ−→uθ+ r(sinθdϕ)−→uϕ.

2.2.2 Elementary Surface and Volume:

dS = r2 sinθdθdϕ.

dV = r2 sinθdr dθdϕ.

Example: Find the length of an infinitesimal arc in spherical coordinates for a small
change in θ while keeping r and φ constant.

dl = rdθ

Differential Length Element:

d
−→
l = drer + rdθeθ+ rsinθdφeφ

Differential Surface Element:

dSr = r2 sinθdθdφ, dSθ = rsinθdrdφ, dSφ = rdrdθ

10



Figure 4: Spherical base

Figure 5: elementary volumes in spherical coordinates

Differential Volume Element:

dV = r2 sinθdrdθdφ

2.2.3 Solid Angles

A solid angle dΩ in spherical coordinates is given by:

dΩ= sinθdθdφ

The total solid angle in three-dimensional space is:

Ω=
∫ 2π

0

∫ π

0
sinθdθdφ= 4π

11



Figure 6: Solid Angles

3. Operators in Vector Calculus

Example: Compute the gradient of the scalar function f (x, y, z)= x2 + y2 + z2:

∇ f = (2x,2y,2z)

Example: Compute the divergence of the vector field A= (x2, y2, z2):

∇·A= ∂

∂x
(x2)+ ∂

∂y
(y2)+ ∂

∂z
(z2)= 2x+2y+2z

These examples reinforce the mathematical concepts necessary for physics applications.

3.1 Applications:

3.1.1 Calculate the perimeter of a circle C with radius R (simple integral).

Solution:
We have dl = R dθ, hence:

C =
∫ 2π

0
Rdθ = 2πR.

3.1.2 Calculate the area of a disk D with radius R (double surface integral).

We use the differential surface element dS = dp p dθ, hence:
Solution:

12



Figure 7: Perimeter of a circle

Figure 8: Area of a disk

D =
Ï

S
dp dθ =

∫ R

0

∫ 2π

0
ρdρdθ.

Evaluating the integral:

D =
∫ 2π

0
dθ

∫ R

0
ρdρ = 2π× R2

2
=πR2.

3.1.3 Calculate the volume of a cylinder V with radius R and height H (triple
volume integral).

We use the differential volume element dV = dp p dθdz, hence:
Solution:

13



Figure 9: Volume of a cylinder

V =
Ñ

V
dp dθdz =

∫ R

0
ρdρ

∫ 2π

0
dθ

∫ H

0
dz.

Evaluating the integral:

V =
∫ H

0
dz

∫ 2π

0
dθ

∫ R

0
ρdρ.

V = H×2π× R2

2
=πR2H.

3.1.4 Calculate the surface area of a hemisphere D with radius R (excluding
the horizontal disk) (double surface integral).

Figure 10: Surface area of a hemisphere

We use the differential surface element dS = R2 sinθdθdφ, hence:
Solution:
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D =
Ï

S
R2 sinθdθdφ.

Evaluating the integral:

D = R2
∫ π

0
sinθdθ

∫ 2π

0
dφ.

D = R2(−cosθ
∣∣∣π
0
)× (2π)= R2(1+1)×2π= 2πR2.

3.1.5 Calculate the volume of a sphere V with radius R (triple volume integral).

Figure 11: Volume of a sphere

We use the differential volume element dV = r2 sinθdr dθdφ, hence:
Solution:

V =
Ñ

V
r2 sinθdr dθdφ.

Evaluating the integral:

V =
∫ R

0
r2 dr

∫ π

0
sinθdθ

∫ 2π

0
dφ.

V =
(

R3

3

)
× (−cosθ

∣∣∣π
0
)×2π.

V = R3

3
× (1+1)×2π= R3

3
×2×2π= 4

3
πR3.
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Chapter II: Electrostatics

4. Elementary Electric Charges

The electrical properties of matter originate at the atomic level. Matter is composed
of atoms, each consisting of a nucleus around which a cloud of electrons orbits. These
electrons repel each other but remain positioned around the nucleus. The nucleus consists
of protons, which carry positive charges, and neutrons, which are neutral. The set of
particles forming the nucleus is called nucleons.

Electrons and protons carry the same electric charge in absolute value, denoted by e.
This electric charge, known as the elementary charge, has a value of:

e = 1.602×10−19 C (4.1)

The electric force acting between positively charged protons and negatively charged
electrons is responsible for the cohesion of atoms and molecules. The total charge of
non-ionized atoms (i.e., those that have neither lost nor gained electrons) is zero.

An electric charge cannot take arbitrary values; it is always an integer multiple of the
elementary charge:

Q =±ne (C) (4.2)

This expresses the fundamental principle of charge quantization.

5. Electrification Experiment

When a glass rod is rubbed with a piece of silk and brought close to small pieces of paper,
the paper pieces are attracted to the rod, indicating that electrons have been removed from
the rod.

5.0.1 First Experiment

A small ball made of elderberry wood or polystyrene is suspended by a thread. A glass or
amber rod, previously rubbed, is brought near the ball. Each rod first attracts and then
repels the ball after contact (Figure 2.1a). However, if both rods are brought close to the
ball simultaneously, nothing happens (Figure 2.1b).

5.0.2 Second Experiment

If two balls are electrified by contact with a rubbed glass rod, they repel each other.
However, if each ball has touched different rubbed rods made of different materials, they
attract each other.

These experiments demonstrate the existence of two states of electrification, corre-
sponding to two types of electric charges: positive and negative. We recall the fundamental
rule:

16



electrization1.png

Figure 12: Electrification experiment

Two bodies with the same type of charge repel each other, while bodies with
opposite charges attract each other.

6. Coulomb’s Law

Consider two point charges q1 and q2 placed in a vacuum. The first exerts a force propor-
tional to q1 on the second, and vice versa. The force between the two charges, known as
electrostatic force, is proportional to the product of their charges:

Fe = K
q1q2

r2 U12 (6.3)

where r is the distance between the two charges, and K is given by:

K = 1
4πϵ0

, with ϵ0 = 8.854×10−12 F/m (6.4)

Application: Calculate the force exerted by charge q1 = 3×10−3 C on charge q2 =
−5×10−4 C separated by a distance of 20 mm.

Solution:

F = K
q1q2

r2 = 9×109 × (3×10−3)(−5×10−4)
(20×10−3)2 (6.5)

F = 33.75×106 N (6.6)
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electrization2.png

Figure 13: Electrization, attraction, and repulsion between charges

7. Superposition Principle

Consider a charge q at point M in the presence of other charges qi located at points Mi.
The force F acting on charge q is:

F=∑
i

K
qqi

r2
i

UiM (7.7)

Application: Compute the resultant force acting on q3 due to q1 and q2.

8. Electrostatic Field

An electric field exists at a point in space if a test charge q0 at that point experiences an
electrostatic force Fe such that:

E= Fe
q0

(8.8)

8.1 Electric Field of a Point Charge

A charge Q at point O creates an electric field at any point M given by:

E(M)= KQ
r2 UOM (8.9)
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9. Electrostatic Potential

9.1 Electric Potential

The work required to move a charge q0 from point A to point B in an electric field is:

WAB = q0

∫ B

A
E ·dl (9.10)

The electric potential difference is defined as:

UAB =VB −VA =−
∫ B

A
E ·dl (9.11)

9.2 Potential of a Point Charge

For a charge Q at point O, the electric potential at a distance r is:

V = K
Q
r

(9.12)

assuming V = 0 at infinity.

10. Electrostatic Potential

The potential at a distance r from a charge q is given by:

V (r)= K q
r

(10.13)

The potential remains constant on spheres of radius r centered around the charge q,
which are called equipotential surfaces.

10.1 Potential Created by Multiple Distinct Point Charges

Using the relationship between the electric field E and potential V , we obtain:

V (M)=∑
i

K qi

r i
(10.14)

where r i is the distance between charge qi and point M. The charges qi can be positive
or negative.

10.2 Potential Due to a Continuous Charge Distribution

For a continuous charge distribution, integration is used:

V (M)= K
∫

dq
r

(10.15)
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10.2.1 Volume Distribution

V (M)= K
Ñ

ρdV
r

(10.16)

where ρ is the volume charge density.

10.2.2 Surface Distribution

V (M)= K
Ï

σdS
r

(10.17)

where σ is the surface charge density.

10.2.3 Linear Distribution

V (M)= K
∫
λdl

r
(10.18)

where λ is the linear charge density.

11. Electrostatic Energy

11.1 Energy of a Point Charge in an Electric Field

The work done to move a charge q from A to B in an electric field E is:

WAB = q(VA −VB) (11.19)

11.2 Energy of a System of Point Charges

The total electrostatic energy W of a system of point charges is given by:

W = 1
2

∑
i

qiVi (11.20)

11.3 Energy of a Continuous Charge Distribution

W = 1
2

Ñ
ρV dV (11.21)

12. Electric Dipole

12.1 Definition

An electric dipole consists of two equal and opposite charges separated by a small distance.
The dipole moment p is given by:

p= qa (12.22)
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12.2 Potential Created by a Dipole

The potential at a point P due to a dipole is:

V = K pcosθ
r2 (12.23)

12.3 Electric Field of a Dipole

The radial and angular components of the electric field are:

Er = K p(2cosθ)
r3 (12.24)

Eθ = K psinθ
r3 (12.25)

13. Gauss’s Theorem

13.0.1 Objectives:

To be able to quickly provide the expression for the electrostatic field created by a source
with a high degree of symmetry.

13.1 Prerequisites:

By drawing two networks of lines on any surface, the surface is decomposed into smaller
areas bounded by these lines (see the figure).

If the lines are very numerous and evenly distributed, each of these areas has a very
small surface. Consider a point P on the surface S. If the number of lines increases
indefinitely, the small area around the point P decreases and tends to approach the portion
of the tangent plane at P to the surface S. In the limit, its area dS becomes infinitely small
and coincides with a portion of the plane. It is called the surface element surrounding the
point P. Thus, any surface S can be considered as the juxtaposition of an infinite number
of surface elements dS.

13.2 Surface Element:

Consider a surface element of area dS.
We associate with this element a vector called the "normal" vector d⃗S, defined as

follows:
- Its origin is a point P on the element. - Its direction is normal to the surface. - Its

magnitude is equal to the area dS.
The vector d⃗S is therefore infinitely small. Its orientation is chosen arbitrarily (outward

for closed surfaces). To orient d⃗S, one can also use the "corkscrew" rule. The contour C
bounding the surface is oriented by arbitrarily choosing a positive direction of traversal.

21



The vector d⃗S is oriented according to the progression of a corkscrew turning in the
direction of C.

13.3 Gauss’s Theorem:

Gauss’s theorem relies on the concept of the flux of a vector. This new concept is introduced
in what follows. However, a good mastery of elementary vector operations, particularly the
dot product, is necessary.

14. Concept of Flux

Let E⃗ denote the electric field vector at point P. Let dS⃗ be the surface element surrounding
this point and the corresponding vector.

14.1 Definition:

By definition, the flux dΦ of the electric field E⃗ through the considered surface element
dS⃗ is equal to the dot product:

dΦ= E⃗ ·dS⃗

This is called the elementary flux to indicate that it is relative to a surface element.

14.2 Sign of the Flux:

The sign of the flux depends on the direction of the vector dS⃗. Consider, for example, the
two opposite vectors dS⃗ and −dS⃗, associated with a surface element.

If the vector dS⃗ makes an angle θ with the electric field E⃗, the vector −dS⃗ makes
an angle π−θ, and since cos(π−θ) =−cos(θ), the dot products E⃗ ·dS⃗ and E⃗ · (−dS⃗) have
opposite values.

To calculate the algebraic flux of the electric field E⃗ through a surface element dS⃗, it is
therefore necessary to choose, in accordance with the concept of positive flux, the direction
of the vector dS⃗ associated with this element.

The flux of an electric field E through a closed surface S is given by:

Φ=
∮

E ·dS= Qenc

ϵ0
(14.26)

where Qenc is the total charge enclosed by the surface.

14.3 Flux Calculation

Consider the surface elements composing the surface S. For each of them, the elementary
flux dΦ is calculated. The total flux Φ of the electric field through the surface S is obtained
by summing the elementary fluxes. This sum is conventionally denoted by the notation:
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Φ=
Ï

S
E⃗ ·dS⃗

To perform this calculation, the vectors dS⃗ associated with the surface elements are
all oriented on the same side of the surface S.

14.4 Flux of a Point Charge

Let P be a point belonging to the surface element dS⃗. The field E⃗ created at P by the
charge q is directed along r⃗ and oriented from q to P if q > 0; its magnitude is:

E = 1
4πϵ0

q
r2

where r is the distance between q and P.
The elementary flux of this electric field through the surface element dS⃗ surrounding

the point P is:

dΦ= E⃗ ·dS⃗ = E dS cosθ

where θ is the angle between E⃗ and dS⃗.
However, dΩ= dS cosθ

r2 is the solid angle dΩ subtended by the contour of dS⃗ as seen
from q (geometrically, it is a cone with vertex at q that is tangent to the surface element
dS⃗).

Gauss’s Theorem

Gauss’s theorem is stated as follows:

14.5 Theorem:

The flux of the electric field through any closed surface S is equal to 1
ϵ0

times the total
algebraic charge contained within the volume bounded by this surface:

Φ=
∮

S
E⃗ ·dS⃗ = Qint

ϵ0

14.6 Proof:

14.6.1 a) Case of Charges Outside a Closed Surface S:

The elements dS⃗1 and dS⃗2 are seen under the same solid angle dΩ in absolute value.
However, E⃗1 and dS⃗1 are collinear, while E⃗2 and dS⃗2 are opposite. Therefore, the fluxes
dΦ1 and dΦ2 have opposite signs. The elementary fluxes cancel out in pairs, and the total
flux of the field E⃗ created by the charge q outside the closed surface is zero.
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14.6.2 b) Case of Charges Inside a Closed Surface S:

The sum of the elementary fluxes will not be zero because all the surface element vectors
are, for example, all oriented outward from the surface. The total flux sent by q through S
will be the sum of the elementary fluxes:

Φ=
∮

S
E⃗ ·dS⃗ = q

ϵ0

The unit of solid angle is the angle that subtends a unit area on a sphere of unit radius.
Since the surface area of a unit sphere is 4π, the solid angle that subtends the entire space
from a point is 4π. The sum extends over the entire space, i.e., 4π.

If there are N charges qi inside S:

Φ=
∮

S
E⃗ ·dS⃗ = 1

ϵ0

N∑
i=1

qi

By defining:

Qint =
N∑

i=1
qi

The flux of E⃗ through a closed surface is equal to 1
ϵ0

times the sum of the interior
charges, regardless of the exterior charges.

14.7 Application of Gauss’s Theorem:

The application of Gauss’s theorem is very useful in problems that exhibit a high degree of
symmetry. Verify this property with the simple example of the field E⃗ created by a point
charge q.

The following two simulations will allow you to apply Gauss’s theorem in the case of two
uniformly charged structures with axes of symmetry. You can demonstrate the simplicity
with which Gauss’s theorem allows the calculation of the electrostatic field created by these
two charge distributions, which exhibit a high degree of symmetry.

14.8 Methodology

Gauss’s theorem is a valuable tool for determining the electric field E⃗ at any point P when
the source charges exhibit high symmetry. The steps for calculating E⃗ are as follows:

1. Determine the orientation of the field using symmetry considerations.
2. Choose a "Gaussian surface" S (imaginary, with no physical reality): - Passing

through the point of interest P. - Most suitable for simplifying the expression of the flux of
E⃗ through it. - Possessing the same symmetry properties as the source. - Not coinciding
with a charged material surface.

3. Express the flux Φ through the closed surface S.
4. Determine the total charge Qint enclosed within the volume bounded by S.
5. Apply Gauss’s theorem:
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Φ=
∮

S
E⃗ ·dS⃗ = Qint

ϵ0

If the Gaussian surface is well chosen, the left-hand side of the equation is a simple
function of E⃗ and the distance r. Thus, the expression for the field E⃗ can be obtained as a
function of the distance r and the source charges.
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