## **Tutorial -1-**

## Exercise 1

The volume of a binary mixture has a molar volume V that depends on its composition:

$$V = 75x_1 + 95x_2 + 3.7x_1x_2$$

For a mixture with  $x_1 = 0.60$ , calculate:

 $1^{\circ}$ / the molar volume of the mixture

 $2^{\circ\!/}$  the partial molar volume of the two components cm³/mol

## Exercise 2

Mixtures of methanol (component 1) and potassium iodide component 2) are prepared by adding given quantities of KI to 1000g of CH<sub>3</sub>OH at T=298 K and P= 1atm.

The apparent molar volume of KI in these mixtures obeys the empirical relationship:

 $\Phi_2 \text{ (mL.mol)} = 21.45 + 11.5 \text{ m}^{1/2}$ 

Where m is the molality of the solution.

1°/ Give the definition of an apparent molar property and briefly explain its meaning.

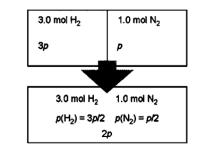
2°/ Express, as a function of m, the volume of a solution consisting of m moles of KI and 1000 g of CH<sub>3</sub>OH.

3°/ Calculate V,  $\varphi_2.\bar{\nu}_2$ ,  $\bar{\nu}_1$  and V, for a solution consisting of 133 g of KI and 1000 g of CH<sub>3</sub>OH.

 $4^{\circ}$ / Consider an infinitely dilute solution of KI in CH<sub>3</sub>OH, express m as a function of x<sub>2</sub>

(molar fraction of KI) and deduce the expression of V as a function of  $x_2$ .

Data: M(KI)=266 g. mol<sup>-1</sup>; M(CH3OH) = 32 g. mol<sup>-1</sup>; $\rho$ (CH<sub>3</sub>OH)=786.5 g.L<sup>-1</sup>.


## Exercise 3

The molar enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is represented by the following equation:  $H = 400x_1 + 600x_2 + x_1x_2(40x_1 + 20x_2)$  where H is in J/mol a. determine expressions for  $\overline{H_1}$  and  $\overline{H_2}$  as functions of  $x_1$ 

b. Numerical values for the pure species enthalpies  $H_1$ \* and  $H_2$ \*

c. Find the expression of  $(H^E)$  d. Numerical values for the partial enthalpies at infinite dilution  $\overline{H_1^{\infty}}$  and  $\overline{H_2^{\infty}}$ 

**Exercise 4**: A container is divided into two equal compartments (figure opposit). One contains 3.0 mol  $H_2$  at 25°*C*; the other contains 1.0 *mol N2 at* 250*C*. Calculate the Gibbs energy of mixing when the partition is removed. Assume perfect gas behavior.  $P^0=1bar$ 



**Exercise 5** For a mixture contains 75%  $H_2$  and 25%  $N_2$  (molar basis) estimate the pseudo critical Temperature and pressure (*Ppc and Tpc*) using Kay's rule. We give: For N2: TC=126.2K and PC=33.5atm For H2 TC=33+8=41K and PC=12.8+8=20.8 atm