
Mila University Center

2nd Year Computer Science Degree

Subject: Object Oriented Programming

Head of subject : DR. SADEK BENHAMMADA

CHAPTER II:
Class and Object

1. Class declaration syntax

2

[Modifiers] class ClassName [extends mother_class] [implements [interfaces]

{
//Attributes

[Modifiers] type nameAttribute_1;

[Modifiers] kind nameAttribute_2;

...

//Methods

[Modifiers] ReturnTypeMethodName_1 (params)​

{

// method body;

}

[Modifiers] ReturnType methodName_2 (params)

{

// method body;

}

...

}

1. Class declaration syntax

H
e

ad
e

r
B

o
d

y

3

1. Class declaration syntax

• A class consists of two parts: (1) header and (2) body .

1.1 . The header:

• Modifiers class (optional) are: abstract , final , and visibility (private , public

• The keyword class followed by the name of the class (required) ;

• The keyword extends followed by the name of the superclass (optional);

• The keyword implements followed by the list of interface names (optional);

Examples:

public class Form {…}

public class Rectangle extends Shape{…}

1.2. The body: surrounded by opening and closing braces ({ … }), it contains the declarations of
attributes and methods:

4

1. Class declaration syntax

1.3. Declaring an attribute (in order):

• Modifiers (optional): static , final , and visibility (private , protected , public);

• Type : The type is either:

• a basic type of the language, (boolean , byte , short , int , long , float , double , char , void),

• or the name of another class in the program.

• Name : name of the attribute

Examples: Attribute Declaration

private int x;

public static final PI=3.14;

5

1. Class declaration syntax

1.4. Declaration of a method: The declaration of a method is composed of the signature
and the boy :

• The signature :
• Modifiers (optional): abstract , static , final , and visibility (private , protected , public);

• The return type of the method;

• Method name;

• And the method parameters;

• The body: a series of instructions placed between { }.

Example: declaring a method
public double sum(double x, double y) {

double s= x+y ;

return s;

}
6

1. Class declaration syntax

• 1.5. Basic types

Types Size values Example
byte 1 byte Integers between -128 and +127 byte temperature ;

temperature = 64;

shorts 2 bytes Integers between -32768 and +32767 short speedMax ;

speedMax = 32000;

int 4 bytes Integers between -2147483648 and

2147483647
int temperatureSun ;

temperatureSun = 15600000;

long 8 bytes Integers between

- 9223372036854775808 and

9223372036854775807

long yearLight ;

lightyear =9460700000000000;

float 4 bytes Floating point numbers between 1.401e-045 and

3.40282e+038
float pi;

pi = 3.141592653f ;
double 8 bytes Floating point numbers between 2.22507e-308 and

1.79769e+308
double division ;

division = 0.3333333333334 ;

char 2 bytes character (65000 characters possible) char character ;

character = 'A'

boolean 1 bit logical value: true or false boolean question;

question = true 7

1. Class declaration syntax

1.6. Character strings
• Strings in Java do not correspond to a data type but to a String class .

• A string can therefore be declared as follows:

String sentence = " Hellow world " ;

• sentence is not a variable but an object of the class String .

• Java supports the + operator as a string concatenation operator .

• The + operator allows to concatenate several character strings.

Examples: Declaration and concatenation of character strings

String s1=" Hello";

String s2="World";

String s3=s1+s2;// s3== Hellow world

8

1. Class declaration syntax

• 1.7.Type Conversion in Java

• Java is Strongly Typed

• Java enforces strict type-checking at compile-time

• Implicit type conversions that may lead to data loss are not allowed.

Example:

• This is valid in C but invalid in Java:

• In Java, an explicit cast is required:

9

double a = 5.5;
int y = a; // Allowed in C

double a = 5.5;
int y = (int) a; // Explicit type conversion

1. Class declaration syntax

• 1.7.Type casting in Java

• In Java, type casting refers to the process of converting a value from one data type to another (
byte , short , int , long , float , double , char)

• The cast can be implicit or explicit
1.7.1 Implicit Type casting

• Implicit type conversion occurs automatically when a value of a smaller data type is assigned to a larger data type :

byte (1 bytes) → short (2 bytes) → int (4 bytes) → long (8 bytes) → float (4 bytes) → double (8 bytes).

Example of implicit casting

10

int i =5;
double d = i; // Implicit conversion from int to double
System.out.println(d); // Outputs: 5.0

1. Class declaration syntax

1.7.Type casting in Java

1.7.2 Explicit Type Casting

• Explicit casting is required when converting a value from a larger data type to a smaller one.

• This prevents unintended data loss and improves code reliability.

• Example:

• The fractional part of the double value is truncated during conversion to int, resulting in potential
loss of information.

11

double d = 10.75;
int i = (int) d; // Explicit conversion from double to int
System.out.println(i); // Outputs: 10

1. Class declaration syntax

• Example : Declaration of a class Point

audience class Point {

// attributes

private double x ; // Abscissa

private double y ; //Ordinate

// methods

public String toString (){

return "Point(" + x + "," + y + ")" ;

}

}

12

2. Java Naming Conventions

13

2. Java Naming Conventions

1. Use meaningful names for classes, attributes, methods and variables . The name should be sufficient to
understand what a method does, for example, without seeing the code's details.

2. Class names start with a capital letter ,

Examples:

public class Rectangle {…}

public class Person {…}

3. The names of attributes , methods and variables start with lowercase .

Examples:

private double length; //attribute

public double surface() {…} //method

14

1. Use meaningful names for classes, attributes, methods and variables . The
name should be sufficient to understand what a method does, for example,
without seeing the code's details.

2. Class names start with a capital letter ,

Examples:

public class Rectangle {…}

public class Person {…}

3. The names of attributes , methods and variables start with lowercase .

Examples:

private double length; //attribute

public double surface() {…} //method

2. Notation conventions

15

16

4. When a name is made up of several words joined together, each successive
name begins with a capital letter.

Examples :

public class BankAccount {…} //Class

public int numberWheels ; //attribute

public double calculateSurface (){…}; // method

5. The name of a constant is in UPPERCASE . When the name of a constant
consists of several words with the words separated by the underscore
character

Examples :

public static final double PI =3.14;

public static final int MAX_NUMBER =100;

6. Typically , the first word of a method name is a verb.

Example :

public double calculateSurface ()

7. It is common for all names to be in English.

2. Notation conventions

17

3. Declaration and creation of an object

18

3.1. Declaring an object

• The declaration of an object is of the form:

ClassName objectName ;

Example: Declaring an object of the Point class

Point p;

• The declaration of the object (Point p) reserves a memory location for a
reference on an object of type Point.

• At this point, the value of the variable p is null

3. Declaration and creation of an object

nullp

19

3.2. Creating an object

• For that p actually references an object, you must call a constructor .

• The constructor is the method used to create an object (allocate memory space
for the object) of a given class and possibly initialize its attributes.

• The constructor is named after the class and does not mention a return type.

Example: Constructor of the Point class

public class Point {

private double x ;

private double y ;

//Constructor

public Point (double a,double b)

{

x=a;

y=b;

}

}

3. Declaration and creation of an object

20

3.2. Creating an object

• To create an object, a constructor is invoked using the new operator ,
which performs the memory reservation and returns the address of the
allocated area.

Example

Point p;//Declaration of the object p

p=new Point(5,3); // Create the p object

• It is possible to combine the declaration and creation of an object.

Example

Point p = new Point(5,3);

3. Declaration and creation of an object

p
Point type

object allocated
with new

21

3.2. Creating an object

• It is possible to declare several constructors for the same class (overload the
constructor).

Example:

We can declare another constructor for the Point class , to create objects
whose x and y attribute values are equal.

public Point(double a)

{

x=a;

y=a;

}

3. Declaration and creation of an object

22

3.2. Creating an object

• The Default Constructor: If no constructor is written for a given class, it is
possible to use the default constructor which simply allocates a memory
location (it does not initialize the attributes).

• For a Point class , the default constructor is as follows:

public Point (){}

Example

If the Point class has no constructors, we can write:

Point p = new Point();

3. Declaration and creation of an object

Note:
If not initialized, a class's attributes are automatically assigned default values:

▪ 0 for numeric attributes (int , float , double , etc.),
▪ false for booleans, and
▪ null for objects (Example: String type attributes).

23

this

• The this keyword is used to reference the object currently in use in a
method.

• Example :

• The instruction this .x =a; means that the x attribute of the
current object (this) is assigned the value a .

3. Declaration and creation of an object

// Constructor of the Point class

public Point(double a, double b)

{

this.x = a;

this.y = b;

}

24

this

• When a method of an object references an attribute x of this object, writing
this.x is implicit.

• this keyword must be used explicitly when there is a conflict of identifiers .

• Example :

We must use the this keyword explicitly, when the same identifiers are used
for attributes and for constructor parameters .

3. Declaration and creation of an object

// Constructor of the Point class

audience Point(double x, double y)

{

this .x =x;

this .y =y;

} 25

3.4. Creating identical objects
• We may need to create two absolutely identical objects.

• Let's look at the following code :

• p1 and p2 contain the same reference ⇒ p1 and p2 point to the same

object .

• Changing the values of the attributes of p1 also changes the values of the
attributes of p2 since, in fact, it is the same object .

3. Declaration and creation of an object

Point p1 = new Point();

Point p2 = p1;

p1

Object created
with new

Point p2 = p1;

p2

26

3.4. Creating identical objects

Solution : Copy Constructor
• Another solution to create identical objects is to define a copy constructor;

• Example: Copy constructor of the Point class

3. Declaration and creation of an object

audience class Point {

private double x ;

private double y ;

// Constructor

audience Point(double x, double y)

{

this . x =x;

this . y =y;

}

//COPY Constructor

public Point (Point p)

{

this . x = p. x ;

this . y = p. y ;

}

}

27

3.4. Creating identical objects
Solution: Copy Constructor

• Example: Creating an object of the Point class using the copy
constructor

3. Declaration and creation of an object

Point p1= new Point(4.0,2.0);

Point p2= new Point(p1);

p1

p2
copy

Point p1= new Point(4.0,2.0);

Point p2= new Point(p1);

28

3.5. Deleting objects
• Objects are not static elements and their lifetime does not necessarily

correspond to the execution time of the program.

• The lifespan of an object goes through three stages :

1. The declaration and creation of the object.

2. Using the object by calling these methods.

3. Object deletion: it is automatic in Java thanks to the memory collector (
Garbage Collector : GC).

• GC is used to automatically delete objects that are no longer referenced by the
program. In C++, it is the programmer who takes care of deleting unnecessary
objects.

3. Declaration and creation of an object

29

3.5. Deleting objects
• Objects are not static elements and their lifetime does not necessarily

correspond to the execution time of the program.

• The lifespan of an object goes through three stages :

1. The declaration and creation of the object.

2. Using the object by calling these methods.

3. Object deletion: it is automatic in Java thanks to the memory collector (
Garbage Collector : GC).

• GC is used to automatically delete objects that are no longer referenced by the
program. In C++, it is the programmer who takes care of deleting unnecessary
objects.

3. Declaration and creation of an object

30

4. Encapsulation

31

• Encapsulation is the ability to hide parts of an object's members (attributes and
methods), i.e. by preventing direct access to these members from the outside.

• Encapsulation allows you to only show what is necessary for your use of the
object .

• The list of methods and attributes that can be used from outside is called the
class 's interface .

4. Encapsulation

32

3.1. Access control to attributes and methods
• To achieve encapsulation, we have a set of modifiers access control to classes ,

methods and attributes .

• For the methods and attributes Within classes, the Java programmer has 3 levels
of access control, which he sets using 3 visibility modifiers .

• audience : public elements are accessible without any restrictions.

• protected : protected elements are only accessible from the class and subclasses that
inherit from it.

• private : private elements are only accessible from within the class itself.

• The default visibility, when nothing is specified, is equivalent to public .

4. Encapsulation

33

4.1 . Access control to attributes and methods

• In general :
• The attributes of a class are declared private. (private) or protected ,

meaning that only objects of the class or its subclasses can read and modify
them

• Methods are declared public , which means that any object can call them
;

4. Encapsulation

34

4.2. Reading and modification

• To read and modify the attributes of an object, we add methods specially
designed for this purpose to the class, which we call " Accessors " .

• Read accessors

• Getters are methods that allow you to read the attributes of the object;

• Getter names usually start with get followed by the attribute name ;

Example : public String getName () {return name}

• Modification

• Modification accessors are methods that allow you to modify the attributes
of the object;

• The names of modifiers usually begin with set followed by the attribute
name.

Example : public void setName (String n) {name=n;}

4. Encapsulation

35

Example
public class Point

{

//Attributes

private double x;

private double y ;

//Reader accessors

public double getX (){return x;}

public double getY (){return y ;}

// Modification accessors

public void setX (double x){ this.x =x;}

public void setY (double y){ this.y =y ;}

toString

public String toString (){

return "Point("+ x +","+ y +)";

}

}

4. Encapsulation

36

Example (continued)

public class MainClass {

public static void main(String[] args) {

Point p= new Point(); /*Creating a Point object using the default

constructor */

p.setX (5.0); /* Use setX () modifier accessor to initialize x

attribute */

p.setY (10.0); /* use setY () modifier accessor to initialize y

attribute */

System.out.println (p.getX ()); /* use getX () getter to display

the value of attribute x */

System.out.println (p.getY ()); // use getY () read accessor to

display the value of the y attribute

}

}

4. Encapsulation
The result displayed:

5.0
10.0

37

4.3. Interest of accessors

• The interest accessors is to make all the rest of the code
independent of the representation of the object:

• If we decide to modify an attribute, we only need to modify the
code of the accessor itself, that is, a single line of the program,
whereas we would have had to modify all the lines where the
attribute was used if we had not used an accessor.

4. Encapsulation

38

4.3. Interest of accessors (Example)
• In the Person class , we can declare the age attribute with public visibility .

• In this way all objects that make up the system can access and modify the age

attribute objects of the class.

• If we decide to replace the int attribute age by int yearOfBirth , wherever
the age attribute was used , the code must be modified .

4. Encapsulation

Public class AClass {

…

Person p=new Person(…);

int x=p.age;

…

p.age=1 5;

… }

Public class AClass {

…

Person p=new Person(…);

int x=p.age;

…

p.age=15;

… }

public class Person {

// attributes

...

public int age;

// methods

…

}

public class Person {

// attributes

...

private int yearOfBirth ;

// methods

…

}

39

4.3. Interest of accessors (Example)
• If getAge () was used and setAge () , then just change the accessor code.

4. Encapsulation

Public class AClass {

…
Person p=new Person(…);
int x= p.getAge ();
….
p.setAge (14);

… }

public class Person {
// attributes
...
private int age;
// method
...
audience int getAge (){

return age;
}
audience void setAge (int a){

age =a;
}
}

import java.util.GregorianCalendar ;
public class Person {

// attributes
...
private int yearOfBirth ;
// method
//...

audience int getAge (){
GregorianCalendar d = new GregorianCalendar ();
return d.get (d. YEAR)- yearofBirth ;
}

audience void setAge (int a){
GregorianCalendar d = new GregorianCalendar ();
yearofBirth = d.get (d. YEAR)-a;

}
}

40

5. Packages

41

5.1. Definition

• Java classes are grouped into packages ;

• Packaging is a means of modularity that allows:

• Split a large application into packages grouping together classes that cover
the same domain;

• protect attributes and methods;

5. Packages

42

5.2. Naming a package

• Each package has a name. By convention, the name of a package
begins with a lowercase letter.

• Any class belonging to a package must first declare its membership
in that package, using the statement:

package packageName ;

Example
vehicle package ;

public class Automobile{...}

vehicle package ;

public class Moped {...}

vehicle package ;

public class Utility {...}

vehicle package ;

public class Bus {...}

5. Packages

package vehicule

Automobile

Autobus

Cyclomoteur

Utilitaire

43

5.3. Class Access Control

• For classes, there are only two levels of visibility:

1. Public : The class is visible to classes in its package , and outside the
package .

• The syntax for declaring a public class is to write:

public class AClass {...}

Example

public class Automobile {...}

2. No visibility : The class is only visible to classes in the package it is in.

• The syntax is to write:

class AClass {...}

Example

class Point {...}

5. Packages

44

5.3 . Using a package

• To designate a class that is defined in another package, we have the
choice between :

1. Import the class :

import PackageName.ClassName ;

2. Precede each occurrence of the class name with the name of the package in
which it is defined .

Example

5. Packages

// Declaration of the person class

package owner ;

public class Person{...}

45

Example (continued)

To designate within the vehicle package the Person class which
belongs to the owner package , we have the choice between the following
code:

5. Packages

package vehicle ;

public class Automobile {

...

owner. Person p;

p=new owner. Person (String firstname , String lastname)

...

}

Or the following code:

package vehicle ;

import owner.Person ;

public class Automobile {

...

Person p;

p=new Person(String firstname , String lastname)

...

}

46

5.3 . Using a package

• For import all classes from a package:

import nomPackage .*;

Example

The following code can be replaced:

By the following code:

5. Packages

import vehicle. Automobile

import vehicle . Moped import

vehicle.Utility

import vehicle.Bus

import vehicle.*

47

6. Passing parameters

48

• In Java, parameters are always passed by value , that is, the value of the actual
parameter is copied into the corresponding formal parameter :

• When each method is called, local memory space is allocated for each formal
parameter;

• The values of the actual parameters are copied before the method is called;

• The calculation is carried out on the formal parameters ;

6. Passing parameters

49

• Example

6. Passing parameters

public class Test {

public void param (double x)

{

x=5

}

public static void main(String arg [])

{

Test test=new Test();

double a = 10;

System.out.println ("Before calling param : a="+a);

test.param (a);

System.out.println (" After calling param : a="+a);

}

}

10has x

hand() param () Result displayed:
Before calling param : a=10.0
After calling param : a=10.0

50

Case of the passage of an object

• When passing an object as a parameter, it is the reference to this object which is passed
and copied as a formal parameter.

• So if the object is modified in the method, the changes will be visible from the outside.

6. Passing parameters

51

Example

6. Passing parameters

public class Point{

private double x;

private double y;

public Point(double x, double y){ this.x =x; this.y =y; }

public static void move (Point pt, double dx, double dy){

pt.x = pt.x+dx ;

pt.y = pt.y+dy ;

}

public String toString (){ return "Point(" + x +","+ y +")";}

public static void main(String arg []){

Point p= new Point(10.0,10.0);

System.out.println ("Before calling move " + p.toString ());

move (p,5.0,5.0);

System.out.println (" After calling move "+ p.toString ());

}

}

Result displayed
Before calling move Point (10.0,10.0)
After the call to move Point(15.0,15.0) 52

Example

6. Passing parameters

10
p

hand(…)

Point

10

x

y

p= new Point(10.0,10.0);

53

Example

6. Passing parameters

Result displayed
Before calling move Point (10.0,10.0)
After the call to move Point(15.0,15.0)

15

5

5

p

pt

dx

dy

move (p,5.0,5.0);

hand(…)

Point

15

x

y

p= new Point(10.0,10.0);

public static void move (Point pt, double dx, double dy){

pt.x = pt.x+dx ;

pt.y = pt.y+dy ;

}

54

7. Static elements

55

7.1 . Static attributes (class attributes)

• attributes are defined with the static keyword ;

• There is only one copy of the static attribute for all objects of the class;

• If a single object changes the value of a static attribute, its value will be changed
for all objects of the class.

• To access a static attribute, we use the notation:

NomC lasse.nomAttribut

Example

7. Static elements

public class car

{

static byte nbRoues = 4;

private double length;

private byte nbPassengers ;

}

56

7.1 . Static attributes (class attributes)

• A classic usage of the static attribute is given by the following example:

Example:
We wanted to add an identification attribute " id " to the Person class,

such that each object of the Person class will have its own value for this
attribute (no two objects should have the same value for the " id " attribute).

Solution:
1. Declaration of the attribute " id " and a static attribute " number "

initialized to 0.

2. In the constructor of the Car class : Assign the value of the " number "
attribute to the " id " attribute, and increment the value of the "number"
attribute.

7. Static elements

57

7.1 . Static attributes (class attributes)

• Example (continued)

7. Static elements

public class Person {

//Attributes

private int id;

public static int number=0 ;

private String name ;

//Constructor

public Person(String name){

id = number;

number++;

this.name =name;

}

// Method toString ()

public String toString ()

{

return "Id:"+ this.id+", Name:"+ this.name ;

}

} 58

7. Static elements

public class MainClass {

public static void main(String arg []){

Person p1=new Person("Ahmed");

Person p2=new Person("Ali");

Person p3=new Person("Aicha");

System.out.println (p1.toString ());

System.out.println (p2.toString());

System.out.println (p3.toString());

System.out.println (" Number of objects ="+

Person.number);

}

}

The displayed result is:

Id:0, Name:Ahmed

Id:1, Name:Ali

Id:2, Name:Aicha

Number of objects=3 59

7.2. Static methods

• The advantage of static methods is that they can be called when you don't have
an object.

• A static method can only use static attributes and methods .

• To call a static method :

ClassName.MethodName ()

• Example

• To call the sum method , we will not need to create an object of the
Additionneur class , we just need to write for example:

Adder.sum (5,10);

7. Static elements

public class Adder

{

public static int sum(int a, int b)

{

return (a+b);

}

}

60

7.2. Static methods

• The main() method is an example of static methods .

• It is the main method that is called when the JVM needs to execute a particular
class.

• The main() method is static, so it is a method called by the class and not an object (No
calling object).

➢ To be able to call the methods of an object within the main() method , it is
necessary to create an object of this class within the main() method .

Example

7. Static elements

public class Person {

// Attributes

...

// Methods

...

audience static void main(String[] args) {

setName (" Ali ");// error , main() is not executed by no

object

Person pers = new Person();

pers.setName ("Ali");// correct

}

}

61

8. Method overloading

62

• Overloading is the process of defining multiple methods with the same name
within the same class.

• Methods with the same name have signatures different,

• We call signature of a method the set consisting of the name of the method and
the parameters passed to it.

• Two methods of objects of the same class that have the same name but do not
have the same parameters, do not have the same signature and JAVA can
distinguish them.

• The compiler chooses which method should be called based on the number and
types of the parameters .

• Overloading allows you to simplify the interface of classes with respect to other
classes .

8. Method

63

Example

Method 4 declaration causes an error because it has the same signature as method
1.

8. Method

public class Adder{

public int sum(int a, int b) // 1

{return (a+b);}

public int sum(int a, int b, int c) // 2

{return (a+b+c);}

public float sum (float a, float b) // 3

{return (a+b);}

public float sum(int a, int b) //4

{return ((float)a+(float)b); } //error

}

64

