
Mila University Center

2nd Year – Bachelor's in Computer Science

Course: Object-Oriented Programming

CHAPTER II:

Class and Object

Lecturer : DR. SADEK BENHAMMADA

EMAIL : s.benhammada@centre-univ-mila.dz

1. Class declaration syntax

2

[Modifiers] class ClassName [extends mother_class] [implements [interfaces]

{
//Attributes

[Modifiers] type nameAttribute_1;

[Modifiers] kind nameAttribute_2;

...

//Methods

[Modifiers] ReturnTypeMethodName_1 (params)

{

// method body;

}

[Modifiers] ReturnType methodName_2 (params)

{

// method body;

}

...

}

H
e

ad
e

r
B

o
d

y

1. Class declaration syntax

3

1. Class declaration syntax

• A class consists of two parts: (1) header and (2) body .

1.1 . The header:

• Modifiers class (optional) are: abstract , final , and visibility (private , public

• The keyword class followed by the name of the class (required) ;

• The keyword extends followed by the name of the superclass (optional);

• The keyword implements followed by the list of interface names (optional);

Examples:

public class Form {…}

public class Rectangle extends Shape{…}

1.2. The body: surrounded by opening and closing braces ({ … }), it contains the declarations of
attributes and methods:

4

1. Class declaration syntax

1.3. Declaring an attribute (in order):

• Modifiers (optional): static , final , and visibility (private , protected , public);

• Type : The type is either:

• a Primitive type of the language, (boolean , byte , short , int , long , float , double , char , void),

• or the name of another class in the program.

• Name : name of the attribute

Examples: Attribute Declaration

private int x;

public static final PI=3.14;

5

1. Class declaration syntax

1.4. Method Declaration: The declaration of a method is composed of the signature and
the body :

• The signature :
• Modifiers (optional): abstract , static , final , and visibility (private , protected , public);

• The return type of the method;

• Method name;

• And the method parameters;

• The body: a series of instructions placed between { }.

Example: declaring a method
public double sum(double x, double y) {

double s= x+y ;

return s;

}

6

1. Class declaration syntax

• 1.5. Primitive types

Types Size values Example
byte 1 byte Integers between -128 and +127 byte temperature ;

temperature = 64;

shorts 2 bytes Integers between -32768 and +32767 short speedMax ;

speedMax = 32000;

int 4 bytes Integers between -2147483648 and

2147483647
int temperatureSun ;

temperatureSun = 15600000;

long 8 bytes Integers between

- 9223372036854775808 and

9223372036854775807

long yearLight ;

lightyear =9460700000000000;

float 4 bytes Floating point numbers between 1.401e-045 and

3.40282e+038
float pi;

pi = 3.141592653f ;
double 8 bytes Floating point numbers between 2.22507e-308 and

1.79769e+308
double division ;

division = 0.3333333333334 ;

tank 2 bytes character (65000 characters possible) char character ;

character = 'A'

boolean 1 bit logical value: true or false boolean question;

question = true 7

1. Class declaration syntax

1.6. Character strings
• Strings in Java do not correspond to a data type but to a String class .

• A string can therefore be declared as follows:

String sentence = " Hellow world " ;

• sentence is not a variable but an object of the class String .

• Java supports the + operator as a string concatenation operator .

• The + operator allows to concatenate several character strings.

Examples: Declaration and concatenation of character strings

String s1=" Hello";

String s2="World";

String s3=s1+s2;// s3== Hellow world

8

1. Class declaration syntax

• Example : Declaration of a class Point

public class Point {

// attributes

private double x ; // Abscissa

private double y ; //Ordinate

// methods

public String toString(){

return "Point(" + x + "," + y + ")" ;

}

}

9

2. Java Naming Conventions

10

2. Java Naming Conventions

1. Use meaningful names for classes, attributes, methods and variables . The name should be sufficient to
understand what a method does, for example, without seeing the code's details.

2. Class names start with a capital letter ,

Examples:

public class Rectangle {…}

public class Person {…}

3. The names of attributes , methods and variables start with lowercase .

Examples:

private double length; //attribute

public double surface() {…} //method

11

2. Java Naming Conventions

4. When a name is made up of several words :

• Class and Interfaces: Use PascalCase (capitalize the first letter of each word).
Example:
public class BankAccount {…} //Class

• Attributes and methods: Use camelCase (start with a lowercase letter, capitalize subsequent words).
Examples :

public int numberWheels ; //attribute

public double calculateArea(){…}; // method

5. Constant should be written in all UPPERCASE letters with underscores separating words.
Examples :

public static final double PI =3.14;

public static final int MAX_NUMBER =100;

6. Typically , the first word of a method name is a verb , describing the action they perform.
Example :
public double calculateArea ()

7. It is common for all names to be in English.

12

3. Object Declaration and Creation

13

3. Object Declaration and Creation

3.1. Declaring an object

• The declaration of an object is of the form:

ClassName objectName ;

Example: Declaring an object of the Point class

Point p;

• The declaration of the object (Point p) reserves a memory location for a reference on an
object of type Point.

• At this stage, the variable p does not refer to any actual object in memory. It simply reserves a
memory location to hold a reference to a Point object.

nullp

14

3. Object Declaration and Creation

3.2. Creating an object
• For that p actually references an object, you must call a constructor .
• The constructor is the method used to create an object (allocate memory space for the object) of

a given class and possibly initialize its attributes.
• The constructor is named after the class and does not mention a return type.
Example: Constructor of the Point class
public class Point {

private double x ;
private double y ;

//Constructor
public Point (double a,double b)
{

x=a;
y=b;

}
}

15

3. Object Declaration and Creation

3.2. Creating an object

• To create an object, a constructor is invoked using the new operator , which
performs the memory reservation and returns the address of the allocated area.

Example
Point p;//Declaration of the object p

p=new Point(5,3); // Create the p object

• It is possible to combine the declaration and creation of an object.

Example

Point p = new Point(5,3);

p
Point type

object allocated
with new

16

3. Object Declaration and Creation

3.2. Creating an object

• It is possible to declare several constructors for the same class (overload the constructor).

Example:

We can declare another constructor for the Point class , to create objects whose x and y attribute values
are equal.

public Point(double a)

{

x=a;

y=a;

}

17

3. Object Declaration and Creation

3.2. Creating an object

• The Default Constructor: If no constructor is written for a given class, it is possible to use
the default constructor which simply allocates a memory location (it does not initialize
the attributes).

• For a Point class , the default constructor is as follows:

public Point(){}

Example

If the Point class has no constructors, we can write:

Point p = new Point();

Note:
If not initialized, a class's attributes are automatically assigned default values:

▪ 0 for numeric attributes (int , float , double , etc.),
▪ false for booleans, and
▪ null for objects (Example: String type attributes). 18

3. Object Declaration and Creation

The this Keyword
• The this keyword is used to reference the object currently in use in a method.

• Example :

• The instruction this.x=a; means that the x attribute of the current object
(this) is assigned the value a .

// Constructor of the Point class

public Point(double a, double b)

{

this.x = a;

this.y = b;

}

19

3. Object Declaration and Creation

this

• When a method of an object references an attribute x of this object, writing this.x is
implicit.

• this keyword must be used explicitly when method parameters have the same name as
attributes.

• Example :

We must use the this keyword explicitly, when the same identifiers are used for
attributes and for constructor parameters .

// Constructor of the Point class

public Point(double x, double y)

{

this.x =x;

this.y =y;

} 20

3. Object Declaration and Creation

3.4. Creating identical objects
• We may need to create two absolutely identical objects.
• Let's look at the following code :

• p1 and p2 contain the same reference ⇒ p1 and p2 point to the same object .

• Changing the values of the attributes of p1 also changes the values of the attributes of p2 since,
in fact, it is the same object .

Point p1 = new Point();

Point p2 = p1;

p1

Object created
with new

Point p2 = p1;

p2

21

3. Object Declaration and Creation

3.4. Creating identical objects

Solution : Copy Constructor

• Another solution to create identical objects is to define a copy constructor;

• Example: Copy constructor of the Point class

public class Point {

private double x ;

private double y ;

// Constructor

public Point(double x, double y)

{

this. x =x;

this. y =y;

}

//COPY Constructor

public Point (Point p)

{

this. x = p. x ;

this. y = p. y ;

}

}
22

3. Object Declaration and Creation

3.4. Creating identical objects

Solution: Copy Constructor

• Example: Creating an object of the Point class using the copy constructor

Point p1= new Point(4.0,2.0);

Point p2= new Point(p1);

p1

p2
copy

Point p1= new Point(4.0,2.0);

Point p2= new Point(p1);

23

3. Object Declaration and Creation

3.5. Deleting objects

• Objects are not static elements and their lifetime does not necessarily correspond to the
execution time of the program.

• The lifespan of an object goes through three stages :

1. The declaration and creation of the object.

2. Using the object by calling these methods.

3. Object deletion: it is automatic in Java thanks to the memory collector (Garbage
Collector : GC).

• GC is used to automatically delete objects that are no longer referenced by the program.
In C++, it is the programmer who takes care of deleting unnecessary objects.

24

4. Encapsulation

25

4. Encapsulation

• Encapsulation is the ability to hide parts of an object's members (attributes and methods),
i.e. by preventing direct access to these members from the outside.

• Encapsulation allows you to only show what is necessary for your use of the object .

• The list of methods and attributes that can be used from outside is called the class 's
interface .

ObjectOutside of the
object

Methods

26

4. Encapsulation

3.1. Access control to attributes and methods
• To achieve encapsulation, we have a set of modifiers access control to classes , methods and attributes .

• For the methods and attributes Within classes, the Java programmer has 3 levels of access control, which he
sets using 3 visibility modifiers .

• Public : public elements are accessible without any restrictions.

• protected : protected elements are only accessible from the class and subclasses that inherit from it.

• private : private elements are only accessible from within the class itself.

• The default visibility, when nothing is specified, is equivalent to public .

27

4. Encapsulation

4.1 . Access control to attributes and methods
• Attributes of a class are typically declared private (private) or protected (protected), meaning they are not

directly accessible from outside the class. This ensures data encapsulation and prevents unintended
modifications.

• Methods are usually declared public (public), meaning any object can call them.
• Example

public class Person {
private String name; // Private attribute (not directly accessible)
protected int age; // Protected attribute (accessible in subclasses)

// Public method (accessible everywhere)
public void setName(String name) {

this.name = name;
}

// Public method (getter)
public String getName() {

return name;
}

} 28

4. Encapsulation

4.2. Reading and Modification (Accessors)
• To read and modify the attributes of an object while maintaining encapsulation, we use specially designed

methods called accessors.

• These accessors ensure controlled access to private attributes, preventing direct modification from outside
the class.

Reading Accessors (Getters)

• Getters are methods that allow reading (retrieving) an object's private attributes.

• The method name typically starts with "get" followed by the attribute name (in camel case).

• Getters return the value of the attribute but do not modify it.

Example public class Person {
private String name; // Private attribute

// Getter method to retrieve the name
public String getName() {

return name;
}

} 29

4. Encapsulation

4.2. Reading and Modification (Accessors)

• Modification Accessors (Setters)

• Setters are methods that allow modifying (updating) an object's private attributes.

• The method name typically starts with "set" followed by the attribute name.

• Setters take a parameter and assign it to the private attribute.

• Example

public class Person {
private String name; // Private attribute

// Setter method to modify the name
public void setName(String n) {

name = n;
}

}

30

4. Encapsulation

Example : Point Class (Encapsulation with Getters and Setters)
public class Point {

// Attributes (private for encapsulation)
private double x;
private double y;

// Getter methods (read accessors)
public double getX() {

return x;
}

public double getY() {
return y;

}

// Setter methods (modification accessors)
public void setX(double x) {

this.x = x;
}

public void setY(double y) {
this.y = y;

}
} 31

4. Encapsulation

Example : MainClass (Testing the Point Class)
public class MainClass {

public static void main(String[] args) {
// Creating a Point object using the default constructor
Point p = new Point();

// Using setters to modify attributes
p.setX(5.0);
p.setY(10.0);

// Using getters to read and display attribute values
System.out.println("X coordinate: " + p.getX());
System.out.println("Y coordinate: " + p.getY());

}
}

The result displayed:

X coordinate: 5.0
Y coordinate: 10.0

32

4. Encapsulation

4.3. Importance of Accessors (Getters and Setters)

The main advantage of using accessors (getters and setters) is that they make the rest of the code

independent of the internal representation of an object.

1. Encapsulation & Data Protection
• Attributes are kept private (private) and can only be accessed or modified through methods, ensuring better

control over data.

• Prevents accidental modifications or direct manipulation of sensitive data.

2. Flexibility & Maintainability

• If we decide to change an attribute’s implementation, we only modify the getter or setter, without

affecting the rest of the code.

• Without accessors, every part of the program that uses the attribute would need to be modified, making

maintenance difficult and error-prone.

33

4. Encapsulation

• 4.3. Importance of Accessors (Getters and Setters)

Example : Direct Access (Not Recommended)

Problem: If we later decide to add validation (e.g., no negative balances), we must modify

every line that directly accesses balance.

public class BankAccount {

// Direct modification (Unsafe)
public double balance;

}

// MainClass
public class MainClass {

public static void main(String[] args) {
BankAccount account = new BankAccount();

// Direct modification (Unsafe)
account.balance = 500;
System.out.println("Balance: " + account.balance);

}
}

34

4. Encapsulation

• 4.3. Importance of Accessors (Getters and Setters)

Example : Using Getters and Setters (Best Practice)
public class BankAccount {
private double balance; // Private attribute
(Encapsulation)

// Getter method (Read access)
public double getBalance() {

return balance;
}
// Setter method (Write access with validation)
public void setBalance(double balance) {

if (balance >= 0) {
this.balance = balance;

} else {
System.out.println("Balance cannot be negative!");

}
}

}

// MainClass
public class MainClass {

public static void main(String[] args) {
BankAccount account = new BankAccount();
account.setBalance(500); // Using setter
System.out.println("Balance: "+account.getBalance());
// Using getter
account.setBalance(-100); // Balance cannot be
negative!

}
}

35

5. Packages

36

5. Packages

5.1. Definition
• A package is a collection of related classes, interfaces, and sub-packages that are grouped

together under a common name.

Importance of Using Packages:

• Improves Code Organization: Groups similar classes together, making projects structured and
manageable.

• Enhances Code Reusability: Packages allow modular design, making it easier to reuse and import
code.

• Access Control & Encapsulation: Provides better control over class visibility

37

5. Packages

5.2 Declaring a Package

• A package is declared at the top of a Java file using the package keyword.

• By convention, the name of a package begins with a lowercase letter.

• Syntax:

package packageName ;

Example
package vehicule

Automobile

Autobus

Cyclomoteur

Utilitaire

package vehicles;

public class Car{...}

package vehicles;

public class Track {...}

package vehicles ;

public class Van {...}

package vehicles;

public class Bus {...}

Package vehicles

Track

Van Bus

Car

38

5. Packages

5.3. Class Access Control
• For classes, there are only two levels of visibility:

1. Public Class : The class is visible to classes in its package , and outside the package .
• Syntax:

public class AClass {...}

Example

public class Car {...}

2. Package-Private Class (Default Visibility): The class is only visible to classes only accessible within
the same package. It cannot be accessed from another package, even if imported.

• Syntax:

class AClass {...}

Example

class Point {...}

39

5. Packages

5.3 . Using a package

• When referencing a class from another package, there are two ways to access it:

1. Importing the class : The recommended approach is to use the import statement to import the class
before using it.

• Syntax

import PackageName.ClassName ;

2. Using the Fully Qualified Name : Precede each occurrence of the class name with the name of the
package in which it is defined

40

5. Packages

Example // Declaration of the person class in

package owner ;

public class Person{...}

package vehicle ;

public class Automobile {

...

owner.Person p;

p=new owner.Person (String firstname , String lastname)

...

}

package vehicle ;

import owner.Person ;

public class Automobile {

...

Person p;

p=new Person(String firstname , String lastname)

...

}

Importing the class :

Using the Fully
Qualified Name :

41

5. Packages

• For import all classes from a package:

import nomPackage .*;

Example

The following code :

can be replaced by the following code: import vehicle.*

Import vehivles.Car;

Import vehivles.Track;

Import vehivles.Van;

Import vehivles.Bus;

package vehicles;

public class Car{...}

package vehicles;

public class Track {...}

package vehicles ;

public class Van {...}

package vehicles;

public class Bus {...}

42

5. Packages

5.4 Creating Sub-Packages

• A sub-package is a package inside another package. It helps in better organization of related

classes.

Example: Creating a Sub-Package vehicles.cars

Importing a Class from a Sub-Package java

package vehicles.cars; // Declaring sub-package cars of package vehicule
public class SportsCar {

…
}

import vehicles.cars.SportsCar; // Importing from sub-package
public class Main {

public static void main(String[] args) {
SportsCar ferrari = new SportsCar();
...

}
}

43

5. Packages

5.5 Default Package (No Package Declaration)

• If a Java file does not specify a package, it is placed in the default package (not recommended for
large projects).

• Example

• Limitation: Classes in the default package cannot be imported in files that belong to a named
package.

public class DefaultClass {
public void display() {

System.out.println("This class is in the default package.");
}

}

44

6. Parameter Passing in Methods

45

6. Parameter Passing in Methods

• In Java, parameters are always passed by value, meaning that the value of the actual parameter is copied
into the corresponding formal parameter when a method is called.

• When each method is called, local memory space is allocated for each formal parameter;

• The values of the actual parameters (arguments) are copied into the corresponding formal parameters
before execution.

• The method works on the copied values, not on the original arguments.

• Changes made inside the method do not affect the original variables (for primitive types)

46

6. Parameter Passing in Methods

• Example public class Test {
public void param (double x)
{

x=5
}
public static void main(String arg [])
{

Test test=new Test();
double a = 10;
System.out.println ("Before calling param : a="+a);
test.param (a);
System.out.println (" After calling param : a="+a);

}
}

10a 5x

main() param() Result displayed:
Before calling param : a=10.0
After calling param : a=10.0

47

6. Parameter Passing in Methods

Passing an Object as a Parameter in Java
• In Java, when an object is passed as a parameter to a method, it is the reference to the

object that is passed and copied into the formal parameter.

• The memory address (reference) of the object is copied, not the object itself.

• Since both the actual parameter (original object) and the formal parameter (method
argument) point to the same object in memory, modifications made inside the method
affect the original object.

48

6. Parameter Passing in Methods

Example

public class Point{
private double x;
private double y;
public Point(double x, double y){ this.x =x; this.y =y; }
public static void move (Point pt, double dx, double dy){

pt.x = pt.x+dx ;
pt.y = pt.y+dy ;

}
public String toString(){ return "Point(" + x +","+ y +")";}

public static void main(String arg []){
Point p= new Point(10.0,10.0);
System.out.println ("Before calling move " + p.toString());
move (p,5.0,5.0);
System.out.println (" After calling move "+ p.toString());

}
}

Result displayed
Before calling move Point (10.0,10.0)
After the call to move Point(15.0,15.0)

49

Example (explanation)

10
p

main(…)

Point

10

x

y

p= new Point(10.0,10.0);

6. Parameter Passing in Methodsc

50

Example (explanation)

Result displayed:
Before calling move Point (10.0,10.0)
After the call to move Point(15.0,15.0)

15

5

5

p

pt

dx

dy

move (p,5.0,5.0);

main(…)

Point

15

x

y

p= new Point(10.0,10.0);

public static void move (Point pt, double dx, double dy){

pt.x = pt.x+dx ;

pt.y = pt.y+dy ;

}

6. Parameter Passing in Methods

51

7. Static elements

52

7. Static elements

• Static elements in Java belong to the class itself rather than instances (objects) of the
class.

• This means they are shared across all objects and do not require object instantiation to
be accessed.

• There are two main types of static elements in Java:

1.Static Attributes (Class Variables)

2.Static Methods (Class Methods)

53

7. Static elements

7.1 . Static attributes (class attributes)

• Static attributes are defined with the static keyword ;

• There is only one copy of the static attribute for all objects of the class;

• If a single object changes the value of a static attribute, its value will be changed for all
objects of the class.

• To access a static attribute, we use the notation:

NomC lasse.nomAttribut

Example

public class car
{

static byte wheelCount = 4;
private double length;
private byte nbPassengers ;

}
54

7. Static elements

7.1 . Static attributes

A classic usage of the static attribute is given by the following example:

Example:
We wanted to add an identification attribute " id " to the Person class, such that
each object of the Person class will have its own value for this attribute (no two
objects should have the same value for the " id " attribute).

Solution:
1.Declaration of the attribute " id " and a static attribute " number " initialized

to 0.

2.In the constructor of the Car class : Assign the value of the " number " attribute to
the " id " attribute, and increment the value of the "number" attribute.

55

7. Static elements

• 7.1 . Static attributes

Example
public class Person {

//Attributes
private int id;
public static int number=0 ;
private String name ;
//Constructor
public Person(String name){

id = number;
number++;
this.name =name;

}
// Method toString()
public String toString()
{

return "Id:"+ this.id+", Name:"+ this.name ;
}

}

public class MainClass {
public static void main(String arg []){

Person p1=new Person("Ahmed");
Person p2=new Person("Ali");
Person p3=new Person("Aicha");

System.out.println (p1.toString());
System.out.println (p2.toString());
System.out.println (p3.toString());

System.out.println (" Number of objects
="+ Person.number);

}
}

The displayed result:

Id:0, Name:Ahmed

Id:1, Name:Ali

Id:2, Name:Aicha

Number of objects=3

56

7. Static elements

7.2. Static methods
• A static method belongs to the class rather than an instance.

• Called using the class name (no need for an object).
• Cannot access non-static attributes or methods directly.
• A static method can only access static attributes and methods .

• To call a static method :
ClassName.methodName()

• The advantage of static methods is that they can be called when you don't have an object.
• Example

• To call the sum method , we will not need to create an object of the Adder class , we just need to write
for example:

public class Adder {
public static int sum(int a, int b) {

return (a+b);
}

}

Adder.sum (5,10);

public class Main {
public static void main(String[] args) {

int sum = Adder.add(5, 10);
System.out.println("Sum: " + sum); // Output: Sum: 15

}
}

57

7. Static elements

7.2. Static methods

• The main() method is an example of static methods .

• It is the main method that is called when the JVM needs to execute a particular class.

• The main() method is static, so it is a method called by the class and not an object (No calling object).

➢ To be able to call the methods of an object within the main() method , it is necessary to create an object of this
class within the main() method .

Example
public class Person {
// Attributes
...
// Methods

...
public static void main(String[] args) {

//Incorrect: setName() is an instance method, but no object exists
setName("Ali"); // ERROR: Cannot call non-static method from a static context
//Correct: Create an instance of Person before calling setName()
Person pers = new Person();
pers.setName ("Ali");// correct

}
}

58

8. Method overloading

59

8. Method overloading

• Polymorphism allows one interface to have multiple implementations, making the code more
flexible and scalable.

Types of Polymorphism:

1.Method Overloading: Multiple methods with the same name but different parameters in
the same class. (Covered in This Section)

2.Method Overriding: A subclass redefines a method inherited from the parent class
(explained in chapter 3). (Covered in The next Chapter)

60

8. Method overloading

• Method overloading is the process of defining multiple methods with the same name within the
same class, but with different parameter lists.

• Each method has a unique signature, which consists of:

• Method Name

• Number, Type, and Order of Parameters

• If two methods have the same name but different parameters, they are considered overloaded
methods.

• Java differentiates between overloaded methods based on their signatures (method name +
parameters).

• Overloading simplifies class design, making it more intuitive and flexible by allowing multiple
ways to use a method.

61

8. Method overloading

Example
public class Adder {

// Method 1: Sum of two integers
public int sum(int a, int b) {

return a + b; }

// Method 2: Sum of three integers (Overloaded)
public int sum(int a, int b, int c) {

return a + b + c;
}

// Method 3: Sum of two floating-point numbers (Overloaded)
public float sum(float a, float b) {

return a + b;
}

// Method 4: Overloading by Parameter Order (int, float)
public float sum(int a, float b) {

return a + b;
}

// Method 5: Overloading by Parameter Order (int, float)
public float sum(float a, int b) {

return a + b;
}

// Method 6 : Compilation Error: Only return type is different (Duplicate
signature)

/*
public float sum(int a, int b) {

return (float) (a + b);
} /*

// Method 6 (Fixed): Avoids duplicate signature issue by changing the
name methos

public float sumAsFloat(int a, int b) {
return (float) (a + b);

}
}

62

