
Mila University Center

2nd Year – Bachelor's in Computer Science

Course: Object-Oriented Programming

CHAPTER I:
Introduction To Oriented Object

Programming

Lecturer : DR. SADEK BENHAMMADA

EMAIL : s.benhammada@centre-univ-mila.dz

1. Programming Paradigms

2. From procedural programming to object-oriented programming

3. Fundamental Concepts of Object-Oriented Programming (OOP)

4. Overview of the Java Programming Language

Course outline

2

1. Programming Paradigms

2. From procedural programming to object-oriented programming

3. Fundamental Concepts of Object-Oriented Programming (OOP)

4. Overview of the Java Programming Language

Course outline

3

Programming Paradigms

• A programming paradigm is a fundamental styles or approaches to programming , based
on a set of principles or theory

• Each paradigm provides a distinct way of thinking programming and structuring code,

Classification of programming paradigms:

1. Procedural Programmin (PP)

2. Object-Oriented Programming: (OOP)

3. Declarative Programming

1. Programming Paradigms

4

Classification of programming paradigms:

1. Procedural Programming: Organizes code into procedures and/or functions:
(C,C++, Python, etc.).

2. Object-Oriented Programming: (OOP) : OOP organizes code into objects that encapsulate data and
behavior. Java, C++, Python, C#.

3. Declarative Programming: Focuses on what the program should accomplish rather than how to
accomplish it.

▪ Domain-specific language: HTML, XML, LaTeX.

▪ Functional Programming: Treats computation as the evaluation of mathematical functions: Lisp, Haskell.

▪ Logic Programming : Uses formal logic to express computations : Prolog

▪ Data definition languages (SQL)

1. Programming Paradigms

5

1. Programming Paradigms

2. From procedural programming to object-oriented programming

3. Fundamental Concepts of Object-Oriented Programming (OOP)

4. Overview of the Java Programming Language

Course outline

6

Top-down approach

• The main program is divided down into smaller modules (functions or procedures),

• Each module is then divided into sub-modules,

• The decomposition continues until it reaches controllable components (the length does not
exceed one page if possible).

• Principal program is divided into smaller, reusable functions or procedures.

2. From procedural programming to object-oriented programming

7

A. Characteristics of Procedural Programming (PP) B. Characteristics of Oriented Object Programming

Data and Functions are Separate

• Variables can be global (accessible throughout the program) or local (accessible only within a

function).

• Procedural programming separates between data and programs that manipulate them.

• Functions operate on external data rather than being part of the data structure itself.

8

2. From procedural programming to object-oriented programming

A. Characteristics of Procedural Programming (PP) B. Characteristics of Oriented Object Programming

Limitations:
1. Maintenance in Procedural Programming is Hard : Changes to data structures or global variables can

require modifications to multiple functions.

9

2. From procedural programming to object-oriented programming

A. Characteristics of Procedural Programming (PP) B. Characteristics of Oriented Object Programming

Limitations:
2. Poor Data Security (Lack of Encapsulation) : Data is not protected, as global variables can be accessed and

modified from anywhere.

3. Code Duplication : Procedural programming does not support inheritance, so similar functions are often
written multiple times.

4. Scalability Issues in Large Applications: As the project grows, the number of functions increase
significantly, leading to code complexity.

5. Difficult Debugging and Testing : If multiple functions modify the same global variable, debugging
becomes difficult.

6. Lack of Real-World Modeling : Procedural programming does not naturally represent real-world entities.

7. Code Reusability Through Functions : Function reuse is limited compared to the inheritance and
polymorphism of OOP.

10

2. From procedural programming to object-oriented programming

A. Characteristics of Procedural Programming (PP) B. Characteristics of Oriented Object Programming

Object-Oriented Programming (OOP) was designed to overcome the limitations of procedural
programming by :

• Association of data structures and the processes that manipulate them in coherent entities

• These entities are objects.

• The data structures associated with an object are its attributes.

• The processes associated with an object are its methods.

• The attributes of an object are only accessible by its methods.

• Exemple

length =10

width=5

R1: Rectangle

getLength ()

getWidth ()

setLength ()

setWidth()

calculateArea()

Object name: Class name

Attributs

Méthodes

11

2. From procedural programming to object-oriented programming

A. Characteristics of Procedural Programming (PP) B. Characteristics of Oriented Object Programming

• The object-oriented approach views software as a collection of interacting objects.

• Each object represents an independent entity with its own data (attributes) and behavior (methods).

• The software's functionality emerges from the collaboration and interactions between these objects,

promoting modularity, reusability, and scalability..

12

2. From procedural programming to object-oriented programming

A. Characteristics of Procedural Programming (PP) B. Characteristics of Oriented Object Programming

1. Programming Paradigms

2. From procedural programming to object-oriented programming

3. Fundamental Concepts of Object-Oriented Programming (OOP)

4. Overview of the Java Programming Language

Course outline

13

A. Object

• An object is a coherent runtime entity that that has :

• Attributes: Variables that store the state or data of the object.

• Methods: Functions that define the behavior or actions the object can perform.

• L’identité: L'objet possède une identité, qui permet de le distinguer des autres objets, indépendamment de son

état: (Deux objets demeurent distincts même si leurs attributs contiennent les mêmes valeurs)

Objet = Identity + State (attributs) + Behavior (methods)

14

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

B. Class

• Definition of a Class

• A class is a template for creating objects. It defines the structure and behavior that its objects will
have.

• A class defines:
• Attributes with their names and types (but not their values ​​which are specific to each object).

• Methods (operation) with their signatures and the code that describes the associated behavior.

• An object is an instance (entity) of a class.

• Multiple objects can be created from a single class, each with its own unique state.

•

15

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

B. Class

Example

Longueur: double

Largeur: double

Rectangle

getLength () : double

getWidth () : double

setLength () : double

setWidth() : double

calculateArea() : double

The Rectangle class Objects R1, R2, and R3 of the Rectangle class.

16

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

length =20

width=12

R2: Rectangle

getLength ()

getWidth ()

setLength ()

setWidth()

calculateArea()

length =200

width=100

R3: Rectangle

getLength ()

getWidth ()

setLength ()

setWidth()

calculateArea()

length =10

width=5

R1: Rectangle

getLength ()

getWidth ()

setLength ()

setWidth()

calculateArea()

C. Message

• Objects communicate with each other by sending messages.

• A message is a request sent from one object to another, asking the receiving object to perform a specific action

• Typically : A message represents the call of a method of the destination object by a source object.

disponible=false

disponible=true

17

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

D. Inheritance :

• Inheritance describes a relationship between a parent class or superclass and a child class or

subclass.

• The child class (subclass):

• Inherits all attributes and methods from the parent class (superclass)

• Can add new attributes and methods

• Purpose on Inheritance

• Reuse existing code of the superclass (or parent class) in a new class the subclass (or child class).

• Avoid duplication : Reuse existing code reduces redundancy, and makes programs more efficient and maintainable.

• Create a logical hierarchy of classes.

• Extend or modify the behavior of the parent class.

18

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

Example :

19

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

Inheritance enables generalization and specialization
1. Generalization

• Generalization is the process of extracting common attributes and methods from multiple classes
and combining them into a more general, higher-level class. This higher-level class is often referred
to as a superclass or parent class.

• How It Works:

• Identify common attributes and methods in multiple classes.

• Create a superclass that contains these common attributes and methods .

• Use inheritance to allow subclasses to inherit from the superclass.

20

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

Inheritance enables generalization and specialization
• 2. Specialization

• Specialization is the process of creating new classes (subclasses) that inherit from a more general
class (superclass) and add or modify specific attributes and methods.

• How It Works:

• Create a subclass that inherits from a superclass.

• Add new attributes or methods specific to the subclass.

• Override methods from the superclass to provide specialized behavior.

21

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

E. Encapsulation

• Encapsulation consists of hiding part of attributes and methods and only allowing access through controlled

methods.

• Hidden attributes are accessible by other objects through services (visible methods).

• An object's services can be invoked through messages.

• The list of messages to which an object is capable of responding constitutes its interface (its external view).

• Purpose:

• Provides a clear and consistent interface for interacting with the object.

• Maintains the integrity of the data : it allows to prohibit direct access to the attributes of the objects (use
of accessors).

• Improved Maintainability: Allows to change the internal implementation of a class without affecting
external code.

•

• Avantages:

22

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

Encapsulation allows to define visibility levels for attributes and methods. There are three levels of visibility:

• Public(+): All objects can access an object's attributes or methods defined with the public visibility

level. This is the lowest level of protection.

• Protected(#): Access is restricted to derived objects.

• Private(-): Access is restricted to methods of the same class. This is the highest level of data protection

- disponible=true

23

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

F. Le polymorphisme
• Polymorphism allows one interface to have multiple implementations, making the code more flexible and scalable.

• Polymorphism is the ability of a single interface to represent multiple forms of behavior.

• It allows the same method name to be used for different types of objects, where each object can provide its own specific implementation
of the method.

• Exemple

radius : double

Circle

getRadius()

setRadius()

calculateArea() : double

When the message " calculateArea()" is executed, it does not have the same effect on an object class Rectangle and an

of class Circle. The method "calculateSurface()" is polymorphic. 24

3. Fundamental Concepts of Object-Oriented Programming (OOP)

Object Class PolymorphismEncapsulationMessage Inheritance

Longueur: double

Largeur: double

Rectangle

getLength () : double

getWidth () : double

setLength () : double

setWidth() : double

calculateArea() : double

1. Programming Paradigms

2. From procedural programming to object-oriented programming

3. Fundamental Concepts of Object-Oriented Programming (OOP)

4. Overview of the Java Programming Language

Course outline

25

Présentation de Java

• Java is an object-oriented programming language.

• It was developed in 1991 by Sun Microsystems (purchased by Oracle Corporation in
2009).

• In 2010, Oracle Corporation acquired Sun Microsystems, making Java an Oracle product.

• Oracle continues to maintain and update Java, introducing new features and performance
enhancements.

4. Overview of the Java Programming Language

26

• Quelques chiffres à propos de Java (2011):

• Enterprise Adoption: Java remains widely used, with over 90% of Fortune 500
companies relying on it for critical applications.

• Number of Developers: Estimated 18.7 million Java developers worldwide in 2024.

• Language Popularity: Ranked 3rd in the TIOBE Index (Jan 2025), with 10.15% market
share (https://www.tiobe.com/tiobe-index/).

• Mobile Devices: Java remains key for Android development, powering billions of
devices.

• Smart Cards: Over 1.4 billion Java-based smart cards are produced annually in
finance, telecom, and security.

27

4. Overview of the Java Programming Language

https://www.tiobe.com/tiobe-index/).

Key Features of Java
• Java has several key features that have contributed to its widespread success. Here are its most important characteristics

1. Java is Interpreted and Compiled

• Java uses a hybrid approach of compilation and interpretation:

• The source code is compiled into bytecode by the Java Compiler (javac).

• Bytecode is an intermediate representation that is not directly executed by the CPU.

• Instead, the Java Virtual Machine (JVM) interprets and executes the bytecode.

This process allows Java programs to be portable and platform-independent.

Matériel Système d’exploitation

Java virtual
machine

Code source Bytecode
Javac

(Compilateur java) Machine 1

Machine 2

28

4. Overview of the Java Programming Language

Key Features of Java

• 2. Java is Platform-Independent (Portable)

• Java follows the "Write Once, Run Anywhere" (WORA) principle.

• Compiled bytecode can run on any device that has a JVM, regardless of the operating system.

• The JVM is platform-specific, but Java code itself does not depend on the underlying system.

• Example: A Java program compiled on Windows can

run on Linux, macOS, or any other OS without modification.

BYTECODE (.CLASS)

JAVA CODE (.JAVA)

COMPILER

JAVAC

JVM
WINDOWS

JVM LINUX JVM MAC

LINUXWINDOWS MAC OS

29

4. Overview of the Java Programming Language

30

4. Overview of the Java Programming Language

Key Features of Java

3. Java is fully Object-Oriented, meaning everything is based on classes and objects.

4. Java is Simple and Developer-Friendly : java is inspired by C and C++, but removes complex features like: Manual memory management (Java

has automatic garbage collection), Pointers (avoiding security risks and errors), Multiple inheritance (Java uses interfaces instead).

5. Java is Strongly Typed :

• Java enforces strict type-checking at compile-time.

• Implicit type conversions that may lead to data loss are not allowed

• Example:

• This is valid in C but invalid in Java:

double a = 5.5;

int y = a; // Allowed in C (but may lose precision)

• In Java, an explicit cast is required:

double a = 5.5;

int y = (int) a; // Explicit type conversion

