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First series of exercises : Mathematical Reminders and Electrostatics

1 Mathematical Reminders

1.1 Exercise 1:

Elements of Length, Surface, and Volume in Coordinate Systems.

1.2 Exercise 2:

Express the differential volume element dV in Cartesian, cylindrical, and spherical coordinates.

1.3 Exercise 3:

Derive the expression for the volume element dV in spherical coordinates (r, θ, ϕ) using the Jacobian
determinant.

1.4 Exercise 4:

Compute the surface area of a torus with major radius R and minor radius r using cylindrical
coordinates.

1.5 Exercise 5 :

Find the gradient of the function ϕ(x, y, z) = x2y + yz3 in Cartesian coordinates.

1.6 Exercise 6:

Prove that the curl of the gradient of any scalar field f is zero, i.e., ∇× (∇f) = 0.

1.7 Exercise 7:

Compute a Double Integral. Evaluate the double integral:

I =

∫ 2

0

∫ x

0
(x2 + y) dy dx

2 Electrostatics

2.1 Exercise 1: Coulomb’s Law

Two charges, q1 = 2µC and q2 = −3µC, are separated by a distance of r = 4 cm in vacuum. Find
the electrostatic force between them.

2.2 Exercise 2: Electric Dipole

An electric dipole consists of two charges +q and −q separated by a distance d. Derive the electric
field at a point in the equatorial plane (perpendicular to the dipole axis).



2.3 Exercise 3: Gauss’s Theorem

A spherical charge distribution has charge Q = 5 × 10−9C within a sphere of radius R = 10 cm.
Use Gauss’s theorem to find the electric field at r = 20 cm.

2.4 Exercise 4: A solid sphere of radius

A solid sphere of radius R carries a volume charge density ρ(r) = ρ0
(
1− r

R

)
. Use Gauss’s theorem

to find the electric field inside and outside the sphere.

2.5 Exercise 5: Capacitance of a Parallel Plate Capacitor

A capacitor has plates of area A = 2 m2 separated by d = 5 mm. Calculate its capacitance.

2.6 Exercise 6: A cylindrical capacitor

A cylindrical capacitor consists of two concentric cylinders of radii a and b (b > a) and length L.
Derive its capacitance.
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3 Solution of Exercise series 1

3.1 Exercise 1: Elements of Length, Surface, and Volume in Coordinate Sys-
tems

Problem: Express the differential volume element dV in Cartesian, cylindrical, and spherical
coordinates.

Solution:
1. Cartesian Coordinates (x, y, z): In Cartesian coordinates, the differential volume element

is simply the product of the differential lengths in each direction:

dV = dx dy dz

2. Cylindrical Coordinates (ρ, ϕ, z): In cylindrical coordinates, the differential volume ele-
ment is derived from the differential lengths in the radial (ρ), angular (ϕ), and vertical (z) directions:

dV = ρ dρ dϕ dz

Here, ρ accounts for the ”scaling” of the angular component as the radius increases.
3. Spherical Coordinates (r, θ, ϕ): In spherical coordinates, the differential volume element

is derived from the differential lengths in the radial (r), polar (θ), and azimuthal (ϕ) directions:

dV = r2 sin θ dr dθ dϕ

The term r2 sin θ arises from the Jacobian determinant when transforming from Cartesian to spher-
ical coordinates.

3.2 Exercise 2: Express the Differential Volume Element dV in Cartesian,
Cylindrical, and Spherical Coordinates

Problem: Express the differential volume element dV in Cartesian, cylindrical, and spherical
coordinates.

Solution:
1. Cartesian Coordinates (x, y, z): The differential volume element is:

dV = dx dy dz

2. Cylindrical Coordinates (ρ, ϕ, z): The differential volume element is:

dV = ρ dρ dϕ dz

3. Spherical Coordinates (r, θ, ϕ): The differential volume element is:

dV = r2 sin θ dr dθ dϕ

Exercise 3: Derive the Expression for the Volume Element dV in Spherical Co-
ordinates Using the Jacobian Determinant

Problem: Derive the expression for the volume element dV in spherical coordinates (r, θ, ϕ) using
the Jacobian determinant.

Solution:
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The transformation from Cartesian coordinates (x, y, z) to spherical coordinates (r, θ, ϕ) is given
by:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

The Jacobian matrix J is defined as:

J =


∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ


Substituting the partial derivatives:

J =

sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0


The determinant of the Jacobian matrix is:

|J | = sin θ cosϕ (r cos θ sinϕ · 0− (−r sin θ) · r sin θ cosϕ)−r cos θ cosϕ (sin θ sinϕ · 0− (−r sin θ) · r sin θ sinϕ)+(−r sin θ sinϕ) (sin θ sinϕ · (−r sin θ)− r cos θ sinϕ · cos θ)

Simplifying, we get:
|J | = r2 sin θ

Thus, the differential volume element in spherical coordinates is:

dV = |J | dr dθ dϕ = r2 sin θ dr dθ dϕ

3.3 Exercise 4: Surface Area of a Torus

The surface area of a torus with major radius R and minor radius r can be computed using
cylindrical coordinates. The parameterization of the torus is:

x = (R+ r cos θ) cosϕ,

y = (R+ r cos θ) sinϕ,

z = r sin θ,

where θ ∈ [0, 2π] and ϕ ∈ [0, 2π] are the angular parameters.
The surface element is given by:

dS =

∣∣∣∣∂r∂θ × ∂r

∂ϕ

∣∣∣∣ dθdϕ.
Computing the derivatives and the magnitude of the cross product, we obtain:

dS = r(R+ r cos θ)dθdϕ.

Thus, the surface area of the torus is:

A =

∫ 2π

0

∫ 2π

0
r(R+ r cos θ)dθdϕ.

=

(∫ 2π

0
r(R+ r cos θ)dθ

)(∫ 2π

0
dϕ

)
.
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Evaluating the integrals:

A = 2πr

∫ 2π

0
(R+ r cos θ)dθ

= 2πr

(
R(2π) + r

∫ 2π

0
cos θdθ

)
.

Since
∫ 2π
0 cos θdθ = 0, we obtain:

A = 4π2Rr.

3.4 Exercise 5: Gradient of a Scalar Function

The function is given by:

ϕ(x, y, z) = x2y + yz3.

The gradient is computed as:

∇ϕ =

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
.

∂ϕ

∂x
= 2xy,

∂ϕ

∂y
= x2 + z3,

∂ϕ

∂z
= 3yz2.

Thus, the gradient is:

∇ϕ = (2xy, x2 + z3, 3yz2).

3.5 Exercise 6: Curl of the Gradient

We need to show that:

∇× (∇f) = 0.

The curl operator is defined as:

∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣ .
Expanding the determinant, we obtain:

∇× (∇f) =

(
∂2f

∂y∂x
− ∂2f

∂x∂y
,
∂2f

∂z∂y
− ∂2f

∂y∂z
,
∂2f

∂x∂z
− ∂2f

∂z∂x

)
.

Since the mixed partial derivatives of a smooth function are equal, each term is zero, proving:

∇× (∇f) = 0.
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3.6 Exercise 7: Evaluating a Double Integral

The given integral is:

I =

∫ 2

0

∫ x

0
(x2 + y) dy dx.

Evaluating the inner integral: ∫ x

0
(x2 + y) dy =

[
x2y +

y2

2

]x
0

= x3 +
x2

2
.

Now, integrating over x:

I =

∫ 2

0

(
x3 +

x2

2

)
dx.

Evaluating term by term: ∫ 2

0
x3dx =

x4

4

∣∣∣2
0
=

16

4
= 4,∫ 2

0

x2

2
dx =

1

2
· x

3

3

∣∣∣2
0
=

1

2
· 8
3
=

4

3
.

Thus, the final result is:

I = 4 +
4

3
=

12

3
+

4

3
=

16

3
.

4 Electrostatics

4.1 Exercise 1: Coulomb’s Law

Two point charges, q1 = 2µC and q2 = −3µC, are separated by a distance of r = 4 cm in vacuum.
We use Coulomb’s law:

F = k
|q1q2|
r2

,

where k = 9× 109 Nm2/C2 is Coulomb’s constant. Substituting values:

F = 9× 109
(2× 10−6)(3× 10−6)

(0.04)2

= 9× 109
6× 10−12

1.6× 10−3

= 33.75 N.

Since the charges are opposite, the force is attractive.
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Figure 1: Coulombforce

4.2 Exercise 2: Electric Dipole

An electric dipole consists of two charges +q and −q separated by a distance d. We derive the
electric field at a point P on the equatorial plane (perpendicular to the dipole axis).

Using the electric field formula for a point charge:

E = k
q

r2
,

and resolving the components from both charges, the perpendicular components cancel, leaving the
net field as:

E =
1

4πε0

p

r3
,

where p = qd is the dipole moment.

Figure 2: Dipolef ield
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4.3 Exercise 3: Gauss’s Theorem

Given a spherical charge distribution with total charge Q = 5 × 10−9C within a sphere of radius
R = 10 cm, we find the electric field at r = 20 cm using Gauss’s law:∮

E · dA =
Q

ε0
.

Since r > R, the charge acts as if concentrated at the center:

E(4πr2) =
Q

ε0

E =
1

4πε0

Q

r2
.

Substituting values:

E =
(
9× 109

) 5× 10−9

(0.2)2

= 1.125× 103 N/C.

4.4 Exercise 4: A Solid Sphere of Radius

A solid sphere of radius R carries a volume charge density

ρ(r) = ρ0

(
1− r

R

)
.

Using Gauss’s theorem, we determine the electric field inside and outside the sphere.

Solution:

Applying Gauss’s law: ∮
S
E · dA =

Qextenc

ϵ0
.

Inside the Sphere (r < R): The charge enclosed within a Gaussian sphere of radius r is:

Qextenc =

∫ r

0
ρ(r′)4πr′2dr′.

Substituting ρ(r):

Qextenc = 4πρ0

∫ r

0

(
1− r′

R

)
r′2dr′.

Evaluating the integral:

Qextenc = 4πρ0

[
r3

3
− r4

4R

]
.

Using Gauss’s law:
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E · 4πr2 = 1

ϵ0
4πρ0

[
r3

3
− r4

4R

]
.

Solving for E:

E =
ρ0
ϵ0

(
r

3
− r2

4R

)
.

Outside the Sphere (r > R): The total charge in the sphere is:

Q =

∫ R

0
ρ(r)4πr2dr.

Evaluating the integral:

Q = 4πρ0

[
R3

3
− R3

4

]
= 4πρ0

R3

12
.

Using Gauss’s law:

E · 4πr2 = Q

ϵ0
,

E =
ρ0R

3

12ϵ0r2
.

4.5 Exercise 5: Capacitance of a Parallel Plate Capacitor

A capacitor with plates of area A = 2 m2 separated by a distance d = 5 mm has capacitance given
by:

C =
ϵ0A

d
.

Substituting values:

C =
(8.85× 10−12)× 2

5× 10−3
.

C = 3.54× 10−9 F = 3.54 nF.

4.6 Exercise 6: A Cylindrical Capacitor

A cylindrical capacitor consists of two concentric cylinders of radii a and b and length L. We derive
its capacitance.
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Solution:

Using Gauss’s law, the electric field in the region between the cylinders is:∮
E · dA =

Q

ϵ0
.

The Gaussian surface is a cylinder of radius r, length L, and surface area 2πrL:

E(2πrL) =
Q

ϵ0
.

Solving for E:

E =
Q

2πϵ0Lr
.

The potential difference between the cylinders is:

V =

∫ b

a
Edr =

∫ b

a

Q

2πϵ0Lr
dr.

Evaluating the integral:

V =
Q

2πϵ0L
ln

(
b

a

)
.

The capacitance is given by:

C =
Q

V
=

2πϵ0L

ln(b/a)
.
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