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First series of exercises : Mathematical Reminders and Electrostatics
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1 Matl;amatical Reminders

1.1 Exercise 1:

Elements of Length, Surface, and Volume in Coordinate Systems.

1.2 Exercise 2:

Express the differential volume element dV in Cartesian, cylindrical, and spherical coordinates.

1.3 Exercise 3:

Derive the expression for the volume element dV in spherical coordinates (r, 6, ¢) using the Jacobian
determinant.

1.4 Exercise 4:

Compute the surface area of a torus with major radius R and minor radius r using cylindrical
coordinates.

1.5 Exercise 5 :

Find the gradient of the function ¢(z,vy,2) = 2%y 4+ y2> in Cartesian coordinates.

1.6 Exercise 6:

Prove that the curl of the gradient of any scalar field f is zero, i.e., V x (Vf) = 0.

1.7 Exercise 7:

Compute a Double Integral. Evaluate the double integral:

2 prx
I:/ / (2% + y) dy dz
0o Jo

2 Electrostatics

2.1 Exercise 1: Coulomb’s Law

Two charges, ¢ = 2uC and go = —3uC', are separated by a distance of » = 4 c¢m in vacuum. Find
the electrostatic force between them.

2.2 Exercise 2: Electric Dipole

An electric dipole consists of two charges +¢ and —¢q separated by a distance d. Derive the electric
field at a point in the equatorial plane (perpendicular to the dipole axis).



2.3 Exercise 3: Gauss’s Theorem

A spherical charge distribution has charge Q = 5 x 107?C within a sphere of radius R = 10 cm.
Use Gauss’s theorem to find the electric field at r = 20 cm.

2.4 Exercise 4: A solid sphere of radius

A solid sphere of radius R carries a volume charge density p(r) = po (1 — %) Use Gauss’s theorem
to find the electric field inside and outside the sphere.

2.5 Exercise 5: Capacitance of a Parallel Plate Capacitor

A capacitor has plates of area A = 2 m? separated by d = 5 mm. Calculate its capacitance.

2.6 Exercise 6: A cylindrical capacitor

A cylindrical capacitor consists of two concentric cylinders of radii a and b (b > a) and length L.
Derive its capacitance.
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3 Solution of Exercise series 1

3.1 Exercise 1: Elements of Length, Surface, and Volume in Coordinate Sys-
tems

Problem: Express the differential volume element dV in Cartesian, cylindrical, and spherical
coordinates.

Solution:

1. Cartesian Coordinates (z,y, z): In Cartesian coordinates, the differential volume element
is simply the product of the differential lengths in each direction:

dV =dzxdydz

2. Cylindrical Coordinates (p, ¢, z): In cylindrical coordinates, the differential volume ele-
ment is derived from the differential lengths in the radial (p), angular (¢), and vertical (z) directions:

dV = pdpdodz

Here, p accounts for the ”scaling” of the angular component as the radius increases.
3. Spherical Coordinates (r,6,¢): In spherical coordinates, the differential volume element
is derived from the differential lengths in the radial (r), polar (), and azimuthal (¢) directions:

dV = r?sinf dr df do

The term 72 sin 6 arises from the Jacobian determinant when transforming from Cartesian to spher-
ical coordinates.

3.2 Exercise 2: Express the Differential Volume Element dV in Cartesian,
Cylindrical, and Spherical Coordinates

Problem: Express the differential volume element dV in Cartesian, cylindrical, and spherical
coordinates.

Solution:

1. Cartesian Coordinates (z,y, z): The differential volume element is:

dV =dxdydz
2. Cylindrical Coordinates (p, ¢, z): The differential volume element is:
dV = pdpdodz
3. Spherical Coordinates (r,6,¢): The differential volume element is:
dV = r?sin6 dr df do
Exercise 3: Derive the Expression for the Volume Element dV in Spherical Co-
ordinates Using the Jacobian Determinant

Problem: Derive the expression for the volume element dV in spherical coordinates (r, 6, ¢) using
the Jacobian determinant.
Solution:
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The transformation from Cartesian coordinates (z,y, z) to spherical coordinates (r, 8, ¢) is given
by:
xr=rsinfcos¢p, y=rsinfsing, z=rcosb

The Jacobian matrix J is defined as:

oz  dr Oz

or 00 04
J=1% 9% 9%
=|or @0 94
9z 0z 0z

or 00 9

Substituting the partial derivatives:

sinfcos¢ rcosfcos¢ —rsinfsing
J=|sinfsing rcosfsing rsinfcose
cos 6 —rsinf 0

The determinant of the Jacobian matrix is:
|J| =sinfcos¢ (rcosfsing -0 — (—rsinb) - rsinf cos¢) —rcosfcos ¢ (sinfsing - 0 — (—rsinf) - rsin 0 sin ¢) +(—

Simplifying, we get:
|J| = r?sinf

Thus, the differential volume element in spherical coordinates is:

dV = |J|dr df dp = r*sin 0 dr df do

3.3 Exercise 4: Surface Area of a Torus

The surface area of a torus with major radius R and minor radius r can be computed using
cylindrical coordinates. The parameterization of the torus is:

x = (R+rcosf)cos ¢,
y = (R+rcosf)sing,

z=rsinb,

where 0 € [0,27] and ¢ € [0, 27] are the angular parameters.
The surface element is given by:

dS = @x@

58 = 95| 04

Computing the derivatives and the magnitude of the cross product, we obtain:
dS =r(R+ rcosf)dfde.

Thus, the surface area of the torus is:

2w 27
A= / / (R + rcos 0)dfde.
o Jo

— (/O%T(R—i—rcose)d@) (/O%dqb) :
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Evaluating the integrals:

2w
A= 27rr/ (R4 rcosf)do
0

2w
= 27r (R(27r) + r/ cos 9d6’> .
0

Since fo% cos fdf = 0, we obtain:

A = 47%Ry.
3.4 Exercise 5: Gradient of a Scalar Function
The function is given by:

o(z,y,2) = 2’y + yz°.

The gradient is computed as:

Vo = <8¢ 0¢ ‘%)

9z’ Ay’ Oz
% = 2wy,
?;5 :x2+z3,
% :3y,z2

Thus, the gradient is:

Vo = 2y, z* + 22, 3y2?).

3.5 Exercise 6: Curl of the Gradient
We need to show that:

Vx(Vf)=0.
The curl operator is defined as:
i j k
0 o) 0
VXxF=|a: 2y o
of or of
oxr Oy Oz

Expanding the determinant, we obtain:

2f  Pf *f  Pf f 0
Oydx  0x0y 0z0y Oydz 0xdz 020x )

v () = (
Since the mixed partial derivatives of a smooth function are equal, each term is zero, proving:

Vx(Vf)=0.
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3.6 Exercise 7: Evaluating a Double Integral

2 rz
I—/ / (2% 4 5) dy dz.
o Jo

The given integral is:

Evaluating the inner integral:

Now, integrating over x:

Evaluating term by term:

Thus, the final result is:

4 Electrostatics

4.1 Exercise 1: Coulomb’s Law

Two point charges, ¢ = 2uC and go = —3uC, are separated by a distance of r = 4 ¢m in vacuum.
We use Coulomb’s law:

lq142]
r2 ’

F=k

where k = 9 x 10 Nm?/C? is Coulomb’s constant. Substituting values:

(2 x 107%)(3 x 1079)
(0.04)2
6 x 10712
109~ —
0 1.6 x 103
= 33.75 N.

F=9x10°

=9 x

Since the charges are opposite, the force is attractive.
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Figure 1: Coulomb force
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4.2 Exercise 2: Electric Dipole

An electric dipole consists of two charges +¢ and —g separated by a distance d. We derive the
electric field at a point P on the equatorial plane (perpendicular to the dipole axis).
Using the electric field formula for a point charge:

q
E == kr—z,
and resolving the components from both charges, the perpendicular components cancel, leaving the
net field as:

__1
~ dwegrd’

where p = gd is the dipole moment.
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Figure 2: Dipoleyield
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4.3 Exercise 3: Gauss’s Theorem

Given a spherical charge distribution with total charge @ = 5 x 107°C within a sphere of radius
R =10 cm, we find the electric field at » = 20 cm using Gauss’s law:

7{ E-dA = Q
€0
Since r > R, the charge acts as if concentrated at the center:
E(4nr?) = Q@
€0
_ 1@
- Amegr?’
Substituting values:
5x 1079
E=(9x10°) ———
( ) (0.2)2

=1.125 x 103 N/C.

4.4 Exercise 4: A Solid Sphere of Radius

A solid sphere of radius R carries a volume charge density
r
pr) =po (1= 3).
Using Gauss’s theorem, we determine the electric field inside and outside the sphere.

Solution:

Applying Gauss’s law:

fEdA: Qextenc‘
S

€0

Inside the Sphere (r < R): The charge enclosed within a Gaussian sphere of radius r is:

T
Qemem—/ p(r/)47rr'2dr’.
0

T T,
Qextenc = 4mpo / (1 - ) 2 dr’ .
0 R

3 4
T T
Qestenc = 47 po I: - ] .

Substituting p(r):

Evaluating the integral:

3 4R

Using Gauss’s law:
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1 3 4
E - 4nr? = —47rp0 [g — ZIR]

o (r_ Y
€0 \3 4R

Outside the Sphere (r > R): The total charge in the sphere is:

Q/ r)amr?d

Solving for E:

Evaluating the integral:

R® R? R3
Q = 4mpo [3 - 4} = 47TPOE-
Using Gauss’s law:
E-4dmr? = =,
€0
_ poR?
12607’2 .

4.5 Exercise 5: Capacitance of a Parallel Plate Capacitor

A capacitor with plates of area A = 2 m? separated by a distance d = 5 mm has capacitance given
by:

Substituting values:

(8.85 x 10712) x 2
5x 10-3

C =

C=354x%x10"2 F = 3.54 nF.

4.6 Exercise 6: A Cylindrical Capacitor

A cylindrical capacitor consists of two concentric cylinders of radii @ and b and length L. We derive
its capacitance.

Page 9



Solution:

Using Gauss’s law, the electric field in the region between the cylinders is:

%E-dA:Q.

€0
The Gaussian surface is a cylinder of radius r, length L, and surface area 2nrL:

E@22nrL) = GQ
0

Solving for E:
_ . Q

" 2megLr’

The potential difference between the cylinders is:

b b
V:/Edr: @ dr.

2mwegLLr

Q b
= In{—]).
v 2megL . a

Evaluating the integral:

The capacitance is given by:
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