

Abdelhafid Boussouf University Center – Mila Institute of Science & Technology Process Engineering – E2 Heat Transfer

T(x) =

Academic year: 2024-2025

Instructor: Dr. Mohamed BOUTI

 \vec{E}_{g}

É.

(Figure 2.1)

q = 1000 W/m³ k = 40 W/m•K c = 1600 kg/m³ p = 4 kJ/kg•K

In-Class Exercises n°02

Exercise 2.1

The temperature distribution across a wall **1 m thick** at a certain $A = 10 \text{ m}^2$ instant of time is given a

$$T(x) = a + bx + cx^2$$

Where

T is in degrees Celsius and **x** is in meters

While

a = 900°C, b = -300°C/m, and c = -50°C/m² A uniform heat generation, $\dot{g} = 1000$ W/m³, is present in the wall of area 10 m² having the properties

 ρ = 1600 kg/m³, k = 40 W/m·K, and c_p = 4 kJ/kg·K

1. Determine the rate of heat transfer entering the wall (x = 0) and leaving the wall (x = 1 m).

2. Determine the rate of change of energy storage in the wall.

3. Determine the time rate of temperature change at **x** = **0**, **0.25**, and **0.5 m**.

Exercise 2.2

A long copper bar of rectangular cross section, whose width w is much greater than its thickness L, is maintained in contact with a heat sink at its lower surface, and the temperature throughout the bar is approximately equal to that of the sink, T_o . Suddenly, an electric current is passed through the bar and an airstream of temperature T_{∞} is passed over the top surface, while the bottom surface continues to be maintained at T_o .

Obtain the differential equation and the boundary and initial conditions that could be solved to determine the temperature as a function of position and time in the bar.

Exercise 2.3

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity $k = 1.2 \text{ W/m} \cdot ^{\circ}\text{C}$, and surface area $A = 15 \text{ m}^2$. The two sides of the wall are maintained at constant temperatures of $T_1 = 120^{\circ}\text{C}$ and $T_2 = 50^{\circ}\text{C}$, respectively, as shown in Figure 2–3.

Determine

- a) the variation of temperature within the wall and the value of temperature at **x** = **0.1 m**
- b) the rate of heat conduction through the wall under steady conditions.

Abdelhafid Boussouf University Center – Mila Institute of Science & Technology Process Engineering – E2 Heat Transfer

Academic year: 2024-2025

Exercise 2.4

Consider a steam pipe of length L = 20 m, inner radius $r_1 = 6 \text{ cm}$, outer radius $r_2 = 8 \text{ cm}$, and thermal conductivity $k = 20 \text{ W/m} \cdot ^{\circ}\text{C}$, as shown in Figure 2–4. The inner and outer surfaces of the pipe are maintained at average temperatures of $T_1 = 150 \text{ °C}$ and $T_2 = 60 \text{ °C}$, respectively.

Obtain a general relation for the temperature distribution inside the pipe under steady conditions, and determine the rate of heat loss from the steam through the pipe.

Exercise 2.5

Consider a spherical container of inner radius $r_1 = 8$ cm, outer radius $r_2 = 10$ cm, and thermal conductivity k = 45 W/m·°C, as shown in Figure 2–5. The inner and outer surfaces of the container are maintained at constant temperatures of $T_1 = 200$ °C and $T_2 = 80$ °C, respectively, as a result of some chemical reactions occurring inside.

Obtain a general relation for the temperature distribution inside the shell under steady conditions, and determine the rate of heat loss from the container.

(Figure 2.4)

Exercise 2.6

Consider, for each situation, a medium in which the heat conduction equation is given in its simplest form as

Situation 1	Situation 2	Situation 3
$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$	$\frac{1}{r}\frac{d}{dr}\left(rk\frac{dT}{dr}\right) + \dot{g} = 0$	$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = \frac{1}{\alpha}\frac{\partial T}{\partial t}$

- a) Is heat transfer steady or transient?
- b) Is heat transfer one-, two-, or three-dimensional?
- c) Is there heat generation in the medium?
- d) Is the thermal conductivity of the medium constant or variable?

Exercise 2.7

Beginning with a differential control volume in the form of a cylindrical shell, derive the heat diffusion equation for a one-dimensional, cylindrical, radial coordinate system with internal heat generation. Compare your result with Equation (**Eq.02**).

Exercise 2.8

Beginning with a differential control volume in the form of a spherical shell, derive the heat diffusion equation for a one-dimensional, spherical, radial coordinate system with internal heat generation. Compare your result with Equation (**Eq.03**).