
Chapitre 2

Linear Maps

Standing assumptions for this chapter
• K denotes R or C.
• V , W , and G denote vector spaces over K.

2.1 Definitions

Definition 2.1.

A linear map from V toW is a function T : V → W with the following properties :

1.
T (u+ v) = T (u) + T (v) for all u, v ∈ V.

2.
T (λv) = λT (v) for all λ ∈ K and v ∈ V.

Let’s look at some examples of linear maps.

Examples 2.1.

1. In addition to its other uses, we let the symbol 0 denote the linear map shcht
that 0(x) = 0, ∀x ∈ V .

2. The identity operator, denoted by I, is the linear map on some vector space
that takes each element to itself, I(x) = I,∀x ∈ V .
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3. Differentiation
Define D ∈ L(P(R)) by

D(p) = p′.

D is a linear map is another way of stating a basic result about differentia-
tion :

4. Integration
Define T ∈ L(P(R),R) by

T (p) =

∫ 1

0

p.

5. Define a linear map T ∈ L(R3,R2) by

T (x, y, z) = (2x− y + 3z, 7x+ 5y − 6z).

Theorem 2.2. Linear Map

Let V and W be two K-vector spaces, and let f : V → W be a function. For f to
be a linear map, it is necessary and sufficient that :

∀x, y ∈ V, ∀λ ∈ K, f(λx+ y) = λf(x) + f(y).

Remark 2.3.

1. If a linear map f is injective, we say that f is a monomorphism.

2. If a linear map f is surjective, we say that f is an epimorphism.

3. If a linear map f is bijective, we say that f is an isomorphism of vector
spaces and that V and W are isomorphic.

4. A bijective endomorphism is called an automorphism.

5. The set of linear maps from V to W is denoted by L(V,W ).

6. The set of linear maps from V to V is denoted by L(V ). In other words,

L(V ) = L(V, V )

Theorem 2.4.

Let f be a linear map. We have :

1. f(0V ) = 0W ;

2. If A is a subspace of V , then fA is a linear map on A ;

3. f(−x) = −f(x), for all x ∈ V ;

4. f (
∑n

i=1 λixi) =
∑n

i=1 λif(xi).
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Lemma 2.5.

Suppose v1, . . . , vn is a basis of V and w1, . . . , wn ∈ W . Then there exists a unique
linear map T : V → W such that

T (vk) = wk,

for each k = 1, . . . , n.

Proof 2.6.

Suppose a1, . . . , ak is a basis of M and b1, . . . , bk ∈ N . Then there exists a unique
linear map K : M → N such that

K(ae) = be for each e = 1, . . . , k.

First, we show the existence of a linear map K with the desired property. Define
K : M → N by

K (S1a1 + · · ·+ Skak) = S1b1 + · · ·+ Skbk,

where S1, . . . , Sk are arbitrary elements of i. The list a1, . . . , ak is a basis of M .
Thus, the equation above indeed defines a function K from M to N (because each
element of M can be uniquely written in the form S1a1 + · · ·+ Skak).

For each e, taking Se = 1 and the other Si = 0 in the equation above shows that
K(ae) = be.

If `, a ∈M with ` = Q1a1 + · · ·+Qkak and a = S1a1 + · · ·+ Skak, then

K(`+ a) = K ((Q1 + S1)a1 + · · ·+ (Qk + Sk)ak)

= (Q1 + S1)b1 + · · ·+ (Qk + Sk)bk

= (Q1b1 + · · ·+Qkbk) + (S1b1 + · · ·+ Skbk)

= K(`) +K(a).

Similarly, if α ∈ i and a = S1a1 + · · ·+ Skak, then

K(αa) = K (αS1a1 + · · ·+ αSkak) = αS1b1+· · ·+αSkbk = α (S1b1 + · · ·+ Skbk) = αK(a).

Thus, K is a linear map from M to N .
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To prove uniqueness, suppose now that K ∈ L(M,N) and that K(ae) = be for
each e = 1, . . . , k. Let S1, . . . , Sk ∈ i. Then the homogeneity of K implies that

K (Seae) = Sebe for each e = 1, . . . , k.

The additivity of K implies that

K (S1a1 + · · ·+ Skak) = S1b1 + · · ·+ Skbk.

Thus, K is uniquely determined on span(a1, . . . , ak) by the equation above. Because
a1, . . . , ak is a basis of M , this implies that K is uniquely determined on M , as
desired.

Definition 2.7. Addition and Scalar Multiplication on L(V,W ).

Suppose S, T ∈ L(V,W ) and λ ∈ K. The sum S + T and the product λT are the
linear maps from V to W defined by

(S + T )(v) = Sv + Tv and (λT )(v) = λ(Tv)

for all v ∈ V .

Theorem 2.8. L(V,W ) is a vector space.

With the operations of addition and scalar multiplication as defined above, L(V,W )

is a vector space.

Theorem 2.9.

Let f be a linear map from V to W . Assume that V has a basis (ei)i∈I .

1. f is surjective if and only if W = Vect{f(ei)}i∈I ;

2. f is injective if and only if {f(ei)}i∈I is linearly independent ;

3. f is bijective if and only if {f(ei)}i∈I is a basis of W .

Examples 2.2.

1. Consider the function :
h : R2 → R3

defined by
(x, y) 7→ (x+ y, 2x− y, x+ 3y).
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Let {(1, 0), (0, 1)} be a basis of R2. We compute :

h((1, 0)) = (1, 2, 1), h((0, 1)) = (1,−1, 3).

Since {(1, 2, 1), (1,−1, 3)} is linearly independent, h is injective.

2. Now, consider the endomorphism h defined by :

h : R3[X]→ R3[X]

such that
P 7→ P + (1 +X)P ′.

We know that {1, X,X2, X3} is a basis of R3[X]. We compute :

h(1) = 1, h(X) = 1 +X, h(X2) = 2X + 3X2, h(X3) = 3X2 + 4X3.

Since {1, 1 +X, 2X + 3X2, 3X2 + 4X3} is linearly independent and its car-
dinality is equal to dimR3[X] = 4, it forms a basis of R3[X]. Therefore, h is
bijective.

Theorem 2.10.

Let V and W be finite-dimensional K-vector spaces of the same dimension, and
let f be a linear transformation from V to W . Then,

f is bijective ⇐⇒ f is injective ⇐⇒ f is surjective.

2.2 Image and Kernel of a Linear map

Definition 2.11. Let f be a linear transformation from V to W . The set

Im(f) := {f(x) | x ∈ E} = f(E)

is called the image of the linear transformation f .

Example 2.1.

1. Consider the linear transformation :

f : R3 → R2
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(x, y, z) 7→ (x+ 2y − z, y − z).

The image Im(f) is the set of all possible outputs of f . We write it as :

Im(f) = {f(x, y, z) | (x, y, z) ∈ R3}.

Substituting f :

Im(f) = {(x+ 2y − z, y − z) | (x, y, z) ∈ R3}.

This can be expressed as the span of the following vectors :

Im(f) = {x(1, 0) + y(2, 1) + z(−1,−1) | x, y, z ∈ R}.

Thus :
Im(f) = Vect{(1, 0), (2, 1), (−1,−1)}.

Note that the vectors (1, 0) and (2, 1) are linearly independent, while (−1,−1)

depends on them. Therefore :

Im(f) = Span{(1, 0), (2, 1)} = R2.

2. Consider the linear transformation :

g : R3[X]→ R3[X]

P 7→ X · P ′′.

where R3[X] is the space of polynomials of degree less than or equal to 3.
The image Im(g) is the set of all possible outputs of g. We write it as :

Im(g) = {g(P ) | P ∈ R3[X]}.

Substituting g :
Im(g) = {X · P ′′ | P ∈ R3[X]}.

To compute P ′′, we take the second derivative of the polynomial P . Let :

P = a0 + a1X + a2X
2 + a3X

3.

Then :
P ′ = a1 + 2a2X + 3a3X

2,
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P ′′ = 2a2 + 6a3X.

Thus :
X · P ′′ = X · (2a2 + 6a3X) = 2a2X + 6a3X

2.

Therefore :
Im(g) = {2a2X + 6a3X

2 | a2, a3 ∈ R}.

This means the image is the span of the vectors 2X and 6X2 :

Im(g) = Span{2X, 6X2}.

Theorem 2.12. Image of a Subspace under a Linear Map

Let f be a linear map from E to F .

1. If A is a subspace of E, then f(A) is a subspace of F . In particular,
Im(f) = f(E) is a subspace of F ;

2. f is surjective if and only if Im(f) = F .

Example 2.2.

Let E = R3 and F = R2. Consider the linear map f : R3 → R2 defined by

f(x, y, z) = (x+ 2y, y − z).

Let A = span({(1, 0, 0), (0, 1, 0)}) be a subspace of R3 (which is spanned by the
first two standard basis vectors). We compute the image of A under f :

f(1, 0, 0) = (1, 0), f(0, 1, 0) = (2, 1).

Thus, f(A) = span{(1, 0), (2, 1)}. Since (1, 0) and (2, 1) are linearly independent,
f(A) is a subspace of R2.

Now, we compute the image of f for the entire space R3 :

f(x, y, z) = (x+ 2y, y − z),

which is a subspace of R2. Since f can produce all vectors of the form (x+2y, y−z)

for any (x, y, z) ∈ R3, we have Im(f) = R2.

Therefore, f is surjective, as Im(f) = F = R2.

Theorem 2.13. Image of a Span under a Linear Map
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Let f be a linear map from E to F . For any subset X of E :

f(Span(X)) = Span(f(X)).

In particular, if E has a basis (ei)i∈I , then :

Im(f) = Span (f(ei))i∈I .

Example 2.3.

1. Consider the linear map :
f : R3 → R2

defined by
(x, y, z) 7→ (x+ 2y − z, z − 3y).

Since the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of R3, we have :

Im(f) = Span{f(1, 0, 0), f(0, 1, 0), f(0, 0, 1)} = Span{(1, 0), (2,−3), (−1, 1)}.

2. Let g be the linear map defined by :

g : R2 → R2[X]

such that
(a, b) 7→ a+ bX + (a− b)X2.

Since the set {(1, 0), (0, 1)} is a basis of R2, we have :

Im(g) = Span{g(1, 0), g(0, 1)} = Span{1 +X2, X −X2}.

Definition 2.14. Kernel of a Linear Map

Let f be a map from E to F . The set :

Ker(f) := f−1({0F}) = {x ∈ E | f(x) = 0}

is called the kernel of the linear map f .

Theorem 2.15.

Let f be a linear map from E to F .

1. If B is a subspace of F , then f−1(B) is a subspace of E. In particular, Ker(f)

is a subspace of E ;
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2. f is injective on E if and only if Ker(f) = {0E}.

Example 2.4.

The set B := {(x, y, z, t) ∈ R4 | 2x + y − 3t = 0} is a subspace of R4 since
B = Ker(f), where f is the linear map defined by :

f : R4 → R

such that
(x, y, z, t) 7→ 2x+ y − 3t.

2.3 Rank Theorem

Definition 2.16. Rank of a Linear Map

Let f be a map from E to F . We say that f has finite rank if Im(f) has finite
dimension, and infinite rank otherwise. If f has finite rank, we call the rank of f ,
denoted rank(f), the dimension of Im(f).

Theorem 2.17. Rank Inequalities

Let f be a linear transformation from E to F .

(i) If F is finite-dimensional, then f has finite rank, and rank(f) ≤ dimF .
Moreover, f is surjective if and only if rank(f) = dimF .

(ii) If E is finite-dimensional, then f has finite rank, and rank(f) ≤ dimE.
Moreover, f is injective if and only if rank(f) = dimE.

Theorem 2.18. Rank Theorem Let f be a linear transformation from E to F .
If E is finite-dimensional, then :

dimE = dimKer(f) + rank(f).
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