Chapitre 2

Linear Maps

Standing assumptions for this chapter
e K denotes R or C.

o V. W, and GG denote vector spaces over K.

2.1 Definitions

Definition 2.1.
A linear map from V to W is a function 7" : V' — W with the following properties :

1.
T(u+v)=T(u)+T(v) foraluwveV.

T(A)=AT(v) forall e KandveV.

Let’s look at some examples of linear maps.

Examples 2.1.

1. In addition to its other uses, we let the symbol 0 denote the linear map shcht

that 0(z) = 0,Vx € V.

2. The identity operator, denoted by I, is the linear map on some vector space

that takes each element to itself, I(x) = I,VYx € V.
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3. Differentiation
Define D € L(P(R)) by
D(p) =7
D s a linear map is another way of stating a basic result about differentia-
tion :

4. Integration
Define T' e L(P(R),R) by

5. Define a linear map T € L(R3 R?) by

T(x,y,z) = (20 —y + 32,7z + by — 62).

Theorem 2.2. Linear Map
Let V and W be two K-vector spaces, and let f : V — W be a function. For f to

be a linear map, it is necessary and sufficient that :
Vr,ye VVAEK, fAz+y)=Af(z)+ f(y).

Remark 2.3.

1. If a linear map f is injective, we say that f is a monomorphism.
2. If a linear map f is surjective, we say that f is an epimorphism.

3. If a linear map f is bijective, we say that f is an isomorphism of vector

spaces and that V' and W are isomorphic.
4. A bijective endomorphism is called an automorphism.
5. The set of linear maps from V' to W is denoted by L(V, W).
6. The set of linear maps from V to V is denoted by £(V). In other words,

LV) =LV, V)

Theorem 2.4.
Let [ be a linear map. We have :

1. f(OV) = OW 5y
2. If A is a subspace of V', then fa is a linear map on A ;

3. f(—z)=—f(x), forallz € V;
4o (i i) = o Aif (@)
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Lemma 2.5.
Suppose vy, ...,v, is a basis of V and wq, ..., w, € W. Then there exists a unique

linear map T : V — W such that

T(’Uk) = W,
for each k=1,... n.
Proof 2.6.
Suppose aq,...,ax is a basis of M and by, ...,by € N. Then there exists a unique

linear map K : M — N such that

K(a,) =b. foreach e=1,... k.

First, we show the existence of a linear map K with the desired property. Define
K:M— N by

K (Siay + -+ + Sgay) = Sib1 + -+ - + Siby,

where Sy, ..., Sk are arbitrary elements of 1. The list ay,...,ay is a basis of M.
Thus, the equation above indeed defines a function K from M to N (because each

element of M can be uniquely written in the form Siay + -- - + Sag).

For each e, taking S. = 1 and the other S; = 0 in the equation above shows that
K(a.) = be.

If b;a € M with £ = Qa1 + - - - + Qrag and a = Sia; + - - - + Spag, then

K(l+a)=K((Q1+S1)ar + -+ (Qk + Sk)ax)
= (Ql + Sl)bl + -+ (Qk + Sk)bk
= (Q1b1 + -+ + Qrby) + (S1by + - - + Siby)
=K({)+ K(a).
Similarly, if o € © and a = Syay + - - - + Skayg, then

K(aa) = K (aS1a1 + -+ - + aSgag) = aS1bi+- - +aSpby = a (5101 + - - - + Siby) = aK(a).

Thus, K is a linear map from M to N.
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To prove uniqueness, suppose now that K € L(M,N) and that K(a.) = b. for
eache=1,..., k. Let Sy,...,S, € 1. Then the homogeneity of K implies that

K (Seae) = Sebe  for each e=1,... k.
The additivity of K implies that

K(Slal +"'+Sk@k:) = Slbl +"‘—|—Skbk.

Thus, K is uniquely determined on span(ay, ..., ax) by the equation above. Because
ai,...,ap is a basis of M, this implies that K is uniquely determined on M, as
desired.

Definition 2.7. Addition and Scalar Multiplication on L(V,W).

Suppose S, T € L(V,W) and A € K. The sum S + T and the product AT are the
linear maps from V' to W defined by

(S+T)(v)=Sv+Tv and (AT)(v) = A(Tv)

for all v e V.

Theorem 2.8. L(V,W) is a vector space.
With the operations of addition and scalar multiplication as defined above, L(V, W)

18 @ vector space.

Theorem 2.9.

Let f be a linear map from V to W. Assume that V' has a basis (€;)icr-
1. f is surjective if and only if W = Vect{ f(e;) }ics ;
2. f is injective if and only if {f(e;)}ier is linearly independent ;
3. f is bijective if and only if {f(e;)}ier is a basis of W.

Examples 2.2.

1. Consider the function :
h:R* = R®

defined by
(z,y) = (z +y,22 —y,x + 3y).



Chapter 2. Linear Maps. 23

Let {(1,0),(0,1)} be a basis of R*. We compute :
h((1,0)) = (1,2,1), h((0,1)) =(1,-1,3).

Since {(1,2,1), (1,—1,3)} is linearly independent, h is injective.

2. Now, consider the endomorphism h defined by :
h: Rg[X] — Rg[X]

such that
P—P+(1+X)P.

We know that {1, X, X? X3} is a basis of R3[X]. We compute :
h1)=1, h(X)=1+X, h(X?) =2X+3X% KX =3X2+4X°

Since {1,1+ X,2X + 3X? 3X? +4X3} is linearly independent and its car-
dinality is equal to dim R3[X| = 4, it forms a basis of R3|X]|. Therefore, h is

bijective.

Theorem 2.10.
Let V and W be finite-dimensional K-vector spaces of the same dimension, and

let f be a linear transformation from V to W. Then,

f s bijective <= [ is injective <= [ s surjective.

2.2 Image and Kernel of a Linear map

Definition 2.11. Let f be a linear transformation from V' to W. The set

Im(f) :={f(z) |z € E} = f(E)
is called the image of the linear transformation f.

Example 2.1.

1. Consider the linear transformation :

[ R — R?
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(,y,2) = (x +2y — 2,y — 2).
The image Im(f) is the set of all possible outputs of f. We write it as :
Im(f) = {f(z,y,2) | (z,y,2) e R’}.
Substituting f :
Im(f) = {(z +2y — 2,y — 2) | (z,y,2) € R’}
This can be expressed as the span of the following vectors :
Im(f) ={x(1,0) +y(2,1) + z2(—1,-1) | z,y, 2z € R}.

Thus :
Im(f) = Vect{(1,0),(2,1),(—1,—-1)}.

Note that the vectors (1,0) and (2,1) are linearly independent, while (—1, —1)
depends on them. Therefore :

Im(f) = Span{(1,0), (2, 1)} = R2.
2. Consider the linear transformation :
g Rg[X] — Rg[X]

P~ X P

where R3[X]| is the space of polynomials of degree less than or equal to 3.
The image Im(qg) is the set of all possible outputs of g. We write it as :

Im(g) = {g(P) | P € Rg[X]}.

Substituting g :
Im(g) ={X - P"| P € R3[X]}.

To compute P”, we take the second derivative of the polynomial P. Let :
P = ap + a1X + a2X2 + CL3X3.

Then :
P’ = ay 4 2a:X + 3a3X?,
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PU = 2(12 —f- 6@3X.

Thus :
X -P'=X-(2a5 +6a3X) = 2a2X + 6a3X>.

Therefore :
[m(g) = {2CZQX + 6(1,3X2 | Ao, a3 € R}

This means the image is the span of the vectors 2X and 6X? :
Im(g) = Span{2X,6X°}.

Theorem 2.12. Image of a Subspace under a Linear Map

Let f be a linear map from E to F.

1. If A is a subspace of E, then f(A) is a subspace of F. In particular,
Im(f) = f(E) is a subspace of F ;

2. f is surjective if and only if Im(f) = F.

Example 2.2.
Let E =R3 and F = R?. Consider the linear map f : R3 — R? defined by

f(l',y,Z) = ($+2y,y—2).

Let A = span({(1,0,0),(0,1,0)}) be a subspace of R® (which is spanned by the

first two standard basis vectors). We compute the image of A under f :

f(1,0,0) = (1,0), f(0,1,0) = (2,1).

Thus, f(A) = span{(1,0),(2,1)}. Since (1,0) and (2,1) are linearly independent,
f(A) is a subspace of R?.

Now, we compute the image of f for the entire space R3 :
f(l’,y,Z) = (x+2yay_ Z)a

which is a subspace of R%. Since f can produce all vectors of the form (x+2y,y—2)
for any (z,y,2) € R, we have Im(f) = R?.

Therefore, [ is surjective, as Im(f) = F = R2.

Theorem 2.13. Image of a Span under a Linear Map
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Let f be a linear map from E to F'. For any subset X of E :

f(Span(X)) = Span(f(X)).

In particular, if E has a basis (e;)icr, then :

Im(f) = Span (f(e;));es -

Example 2.3.

1. Consider the linear map :
[ R = R?

defined by
(l‘,y,Z) = (ZE—f—Qy—Z,Z—?)y)

Since the set {(1,0,0),(0,1,0),(0,0,1)} is a basis of R?, we have :
Im(f) = Span{f(1,0,0), f(0,1,0), f(0,0,1)} = Span{(1,0), (2,-3),(—1,1)}.
2. Let g be the linear map defined by :
g:R? = Ry[X]

such that
(a,b) = a+bX + (a — b) X

Since the set {(1,0),(0,1)} is a basis of R%, we have :

Im(g) = Span{g(1,0),¢(0,1)} = Span{l + X* X — X?}.

Definition 2.14. Kernel of a Linear Map
Let f be a map from E to F. The set :

Ker(f) == f({0r}) = {z € E| f(x) = 0}

is called the kernel of the linear map f.

Theorem 2.15.
Let f be a linear map from E to F.

1. If B is a subspace of F, then f~'(B) is a subspace of E. In particular, Ker(f)

is a subspace of E ;
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2. f is injective on E if and only if Ker(f) = {0g}.

Example 2.4.
The set B = {(z,y,2,t) € R* | 22 +y — 3t = 0} is a subspace of R* since
B = Ker(f), where f is the linear map defined by :

f:R*SR

such that
(x,y,2,t) — 2z +y — 3t.

2.3 Rank Theorem

Definition 2.16. Rank of a Linear Map
Let f be a map from E to F. We say that f has finite rank if Im(f) has finite
dimension, and infinite rank otherwise. If f has finite rank, we call the rank of f,

denoted rank(f), the dimension of Im(f).

Theorem 2.17. Rank Inequalities

Let f be a linear transformation from E to F.

(i) If F s finite-dimensional, then f has finite rank, and rank(f) < dim F.
Moreover, f is surjective if and only if rank(f) = dim F.

(i) If E is finite-dimensional, then f has finite rank, and rank(f) < dim E.
Moreover, f is injective if and only if rank(f) = dim E.

Theorem 2.18. Rank Theorem Let [ be a linear transformation from E to F.
If E is finite-dimensional, then :

dim FE = dim Ker(f) + rank(f).
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