Chapter 2

Review of Probability Theory

Contents

2	Rev	iew of Probability Theory	1
	2.1	Random Experiment and Event	3
	2.2	Classical Definition of Probability	4
	2.3	Probability	4
		2.3.1 Properties	5
	2.4	Conditional Probabilities	5
	2.5	Total Probability Formula	6
		2.5.1 Bayes theorem	6

2.1 Random Experiment and Event

1. Random Experiment:

Definition 2.1.1. A random experiment (R.E.) is any experiment whose outcome is governed by chance.

2. Sample Space:

Definition 2.1.2. *The set of all possible outcomes of a random experiment is called the sample space, typically denoted as* Ω *.*

3. Event:

Definition 2.1.3. An event in Ω is a subset of Ω .

- An event is *certain* if it always occurs.
- An event is *impossible* if it never occurs.
- The *complementary event* of *A* is the event that occurs when *A* does not occur, and is denoted as \overline{A} .
- The event $A \cup B$ occurs if A occurs or B occurs.
- The event $A \cap B$ occurs if both A and B occur.
- The event *A B* occurs if *A* occurs but not *B*.
- Events are *incompatible (disjoint)* if $A \cap B = \emptyset$, meaning A and B cannot both happen.

Examples 2.1.1. *Random experiment: "Throwing a six-sided die" The sample space:*

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- Event A: "Getting the number 2" $A = \{2\} \subset \Omega$
- Event B: "Getting an even number" $B = \{2, 4, 6\} \subset \Omega$

- The complementary event of B ("Getting an odd number") $\overline{B} = \{1, 3, 5\}$
- Event C: "Getting a number less than 7" (a certain event) $C = \{1, 2, 3, 4, 5, 6\}$
- Event D: "Getting a number greater than 8" (an impossible event) $D = \emptyset$
- *The event* $B A = \{4, 6\}$
- *The event* $A \cup B = \{2, 4, 6\}$
- The event $A \cap B = \{2\}$

A and *B* are not incompatible because $A \cap B \neq \emptyset$.

2.2 Classical Definition of Probability

Definition 2.2.1. For each event A in a random experiment, we define the probability of event A as:

 $P(A) = \frac{number \text{ of favorable outcomes for } A}{\text{total number of possible outcomes}} = \frac{number \text{ of elements in } A}{number \text{ of elements in } \Omega}$

Examples 2.2.1. Throwing a coin and observing the upper face is a random experiment. The sample space is:

$$\Omega = \{Heads, Tails\}$$

- Event A: "Getting heads" $P(A) = \frac{1}{2}$
- Event B: "Getting tails" $P(B) = \frac{1}{2}$

2.3 Probability

Definition 2.3.1. A probability is a function $P : \Omega \rightarrow [0,1]$ such that for any event $A \in \Omega$, we have:

- $P(\Omega) = 1$
- For any incompatible events A and B, $P(A \cup B) = P(A) + P(B)$

2.3.1 Properties

- $P(\emptyset) = 0$
- $0 \le P(A) \le 1$
- $P(\overline{A}) = 1 P(A)$
- If $A \subset B$, then $P(A) \leq P(B)$
- $P(A B) = P(A) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

2.4 Conditional Probabilities

Definition 2.4.1. Let A and B be two events such that $P(B) \neq 0$. The probability of A given B, denoted P(A/B) or $P_B(A)$, is given by:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Examples 2.4.1. A class consists of 17 students.

- 8 students study English.
- 7 students study German.
- 2 students study both languages.

We know that a student studies English. What is the probability that the student studies German?

$$P(German/English) = \frac{P(German \cap English)}{P(English)}$$

Given:

- $P(English) = \frac{8}{17}$
- $P(German) = \frac{7}{17}$
- $P(German \cap English) = \frac{2}{17}$

Thus:

$$P(German/English) = \frac{2}{17} / \frac{8}{17} = \frac{1}{4}$$

Remark 2.4.1. *A* and *B* are independent events if and only if $P(A \cap B) = P(A)P(B)$.

Remark 2.4.2. If A and B are independent events, then:

P(A/B) = P(A) and P(B/A) = P(B)

2.5 Total Probability Formula

Definition 2.5.1. Let *E* be a set. B_1, B_2, \ldots, B_n form a partition of *E* if:

- $\forall i \in \{1, \ldots, n\}, B_i \neq \emptyset$
- For all $i \neq j$, $B_i \cap B_j = \emptyset$
- $B_1 \cup B_2 \cup \cdots \cup B_n = E$

2.5.1 Bayes theorem

Theorem 2.5.1. *If events* $B_1, B_2, ..., B_n$ *form a partition of* Ω *and* A *is another event, then:*

$$P(A) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + \dots + P(B_n)P(A/B_n)$$

Examples 2.5.1. We are given three boxes such that: - Box I contains 10 light bulbs, 4 of which are defective. - Box II contains 6 light bulbs, 1 of which is defective. - Box III contains 8 light bulbs, 3 of which are defective.

A box is chosen at random, and a light bulb is randomly drawn from that box. What is the probability that the light bulb is defective?