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Chapter 1
Taylor’s Formula and Limited Development

The limited development LDn(x0) is useful in many areas of mathematics and physics, including

solving differential equations, computing integrals, evaluating limits, and analyzing the local

behavior of a function along with its polynomial approximation.

1.1 Taylor’s Formula

1.1.1 Taylor’s Formula

The Taylor formula allows the approximation of a function that is differentiable multiple times

in the neighborhood of a point by a polynomial whose coefficients depend only on the derivatives

of the function at that point.

Definition 1.1.1. A function that is continuous on [a, b] and differentiable at x0 ∈]a, b[ can be

expressed in a neighborhood of x0 as follows

f(x) = f(x0) + (x− x0)f ′(x0) +R(x),

where R(x) = ε(x)(x−x0), and lim
x→x0

ε(x) = 0, This shows that if f is differentiable, then f can

be approximated by a polynomial of degree 1 (a line).

Example 1.1.2. Consider the function f = ex, and x0 = 0. f can be written as
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f(x) ' f(0) + (x− 0)f ′(0) = x+ 1

Taylor’s formula generalizes this result by showing that functions that are n−times differ-

entiable can be approximated in a neighborhood of x0 by polynomials of degree n, that is to

say

f(x) =
n∑
k=0

f (k)(x0)

k! (x− x0)k︸ ︷︷ ︸
pn(x)

+Rn(x),

= f(x0) + (x− x0)f ′(x0) + f ′′(x0)
2! (x− x0)2 + · · ·+ f (n)(x0)

n! (x− x0)n +Rn(x),

where Rn(x) is the remainder of order n, such that

Rn(x) = f (n+1)(x0)
(n+ 1)! (x− x0)n+1 + · · ·

= ε(x)(x− x0)n and lim
x→x0

ε(x) = 0.

1.1.2 Taylor’s Theorem

Let f and g : [a, b] −→ R be two functions satisfying the following conditions:

1. f ∈ Cn([a, b]), and f (n) is differentiable on ]a, b[.

2. The function g ∈ C([a, b]) and it is differentiable on ]a, b[ and ∀x ∈]a, b[ , g′(x) 6= 0, for

x0 ∈ [a, b]: then ∀x ∈ [a, b], x 6= x0 we have:

f(x) = f(x0) + f ′(x0)
1! (x− x0) + f ′′(x0)

2! (x− x0)2 + · · ·+ f (n)(x0)
n! (x− x0)n +Rn(x0, x).....(∗)

= ∑n
k=0

f (k)(x0)
k! (x− x0)k +Rn(x0, x)

such that Rn(x0, x) = f (n+1)(c)(x− c)n g(x)g(x0)
n! g′(c) , c ∈]x, x0[.....(∗∗)

• The expression (*) is called the Taylor formula with generalized remainder (**).

• he choice of different functions g satisfying condition (**) leads to different forms of the

remainder Rn(x0, x).
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1.1.3 Taylor’s three formulas

Notation 1.1.3. Let I = [a, b] be an interval of R, x0 be an interior point of I, and let

f : I −→ R be a function. We fix a natural number n.

We say that a function is of class Cn on I if it is n times differentiable on I, and its n-th

derivative is continuous on I.

Taylor-Lagrange

Theorem 1.1.4. Let f be of class Cn+1 on I, and x0 ∈ [a, b]. For all x ∈ [a, b], x 6= x0, we

have:

f(x) = f(x0) + f ′(x0)
1! (x − x0) + f ′′(x0)

2! (x − x0)2 + · · · + f (n)(x0)
n! (x − x0)n + f (n+1)(c)

(n+ 1)! (x −

x0)n+1, c ∈]x, x0[.

The term f (n+1)(c)
(n+ 1)! (x− x0)n+1 is called the Lagrange remainder.

Example 1.1.5. 1. Consider the function sin(x). The Taylor-Lagrange formula up to

order 3 in the neighborhood of 0 is written as follows

sin(x) = x− x3

3! + x4

4! cos(c).

2. Consider again x −→ ex. The Taylor-Lagrange formula up to order 4 in the neighbor-

hood of 0 is writtenas follows

ex = 1 + x+ x2

2! + x3

3! + x4

4! + x5

5! e
c.

Taylor-Maclaurin

If we set x0 = 0 in Taylor-Lagrange’s formula, we obtain Maclaurin’s formula

f(x) = f(0) + f ′(0)
1! x+ f ′′(0)

2! x2 + · · ·+ f (n)(0)
n! xn + f (n+1)(θx)

(n+ 1)! xn+1, 0 < θ < 1.
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Taylor-Young

Theorem 1.1.6. Let f : [a, b] −→ R be a function, and let x0 ∈ [a, b], suppose that f (n)(x0)

exists and finite, then ∀x0 ∈ [a, b]

f(x) = ∑n
k=0

f (k)(x0)
k! (x− x0)k + o(x− x0)n,

the remainder Rn(x0, x) = o(x−x0)n is called Young’s remainder, and it satisfies the following

property:

lim
x→x0

Rn(x0, x)
(x− x0)n

= 0.

By setting ε(x) = Rn(x0, x)
(x− x0)n

for x 6= x0 and ε(x0) = 0 we obtain the Young remainder in the

following form: Rn(x0, x) = ε(x)(x− x0)n where lim
x→x0

ε(x) = 0

If x0 = 0, we obtain the Maclaurin-Young formula

f(x) = ∑n
k=0

f (k)(0)
k! xk + xnε(x) where lim

x→0
ε(x) = 0

Example 1.1.7. The Taylor-Young formula for the function sin(x) up to order 2n+ 1 at 0 is

written as follows

sin(x) = x− x3

3! + x5

5! + · · ·+ (−1)n x2n+1

(2n+ 1)! + x2n+1ε(x).

Indeed, we must calculate the successive derivatives of sin(x) at 0. We have

sin(0) = 0, sin′(0) = cos(0) = 1, sin′′(0) = − sin(0) = 0, · · ·

More generally, for all k ∈ N we have

sin(2k)(0) = 0, and sin(2k+1)(0) = (−1)k cos(0) = (−1)k

hence the result.
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1.2 Limited Development

1.2.1 Developments limited to the neighborhood of 0

Definition 1.2.1. Let f be a function defined in the neighborhood of x = 0, possibly except at

0. We say that f admits a limited development of order n in the neighborhood of 0 if there exist

real numbers a0, a1, a2, · · · , an ∈ R and a function ε such that for any non-zero element x of

an interval I of R:

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + xnε(x)

= Pn(x) + xnε(x)
,

such that lim
x→0

ε(x) = 0.

Remark 1.2.2. The polynomial Pn(x) is called regular part of the limited development and

xnε(x) is remainder or complementary part.

Example 1.2.3. Let f = 1
1− x . f admits LDn(0), indeed:

Since 1− xn+1 = (1− x)(1 + x+ x2 + · · ·+ xn), we have

1
1− x −

xn+1

1− x = 1− xn+1

1− x = (1− x)(1 + x+ · · ·+ xn)
1− x = 1 + x+ · · ·+ xn,

where

1
1− x = 1 + x+ · · ·+ xn + xn+1

1− x = 1 + x+ · · ·+ xn
x

1− x ,

Therefore, the function f(x) = 1
1− x, x 6= 1 admits a limited development of order n at x = 0,

with ε(x) = x

1− x , where lim
x→0

ε(x) = 0.

1.2.2 Properties of Limited Development

• If f admits a LDn(x0), then lim
x→x0

f(x) exists, is finite, and is equal to a0. This criterion

is generally used to show that a function does not admit LDn(x0).

For example the function ln(x) does not admit LDn(0), because lim
x→0

ln(x) = −∞.
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• A function does not necessarily have an LDn(x0), but if it does, it is unique.

• Parity

– Even function The LDn(x0) of an even function has a main part that contains

only monomials of even degree. That is to say the coefficients a2k+1 = 0.

– Odd function The LDn(x0) of an odd function has a main part that contains only

monomials of odd degree. That is to say the coefficients a2k = 0.

• The LDn(x0) of a polynomial of degree n is the polynomial itself.

1.2.3 Obtaining Limited Development Using the Taylor-Young For-

mula

Theorem 1.2.4. If f is of class Cn−1 in a neighborhood of a and f (n)(a) exists, then f has a

limited expansion of order n in a neighborhood of a, given by the Taylor-Young formula

f(x) = f(a) + f ′(a)
1! (x− a) + f ′′(a)

2! (x− a)2 + · · ·+ f (n)(a)
n! (x− a)n + (x− a)nε(x)

where lim
x→a

ε(x) + 0.

particular case: If f (n) = (0) exists then f has the following limited development

f(x) = f(0) + f ′(0)
1! x+ f ′′(0)

2! x2 + · · ·+ f (n)(0)
n! xn + xnε(x), such that lim

x→0
ε(x) + 0.

Corollary 1.2.5. If f (n)(0) exists and if f admits a limited expansion of order n

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + xnε(x),

then f(0) = a0,
f ′(0)

1! = a1,
f ′′(0)

2! = a2, · · · ,
f (n)(0)
n! = an.
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1.2.4 Limited Development of usual Functions

Below, we show some well-known limited development of common function of order n, at x = 0

using Maclaurin’s formula :

ex = 1 + x

1! + x2

2! + · · ·+ xn

n! + o(xn)

ln(x1 + x) = x− x2

2 + x3

3 − · · ·+ (−1)n+1x
n

n
+ o(xn)

1
1− x = 1 + x+ x2 + x3 + · · ·+ xn + o(xn)

√
1 + x = 1 + x

2 −
x2

8 − · · ·+ (−1)n−1 1× 3× 5× · · · × (2n− 3)
2nn! xn + o(xn)

1√
1 + x

= 1− x

2 + 3x2

8 − · · ·+ (−1)n1× 3× 5× · · · × (2n− 1)
2nn! xn + o(xn)

(1 + x)α = 1 + αx+ α(α− 1)
2! x2 + · · ·+ α(α− 1) · · · (α− n+ 1)

n! xn + o(xn)

cosx = 1− x2

2! + x4

4! + · · ·+ (−1)n x2n

(2n)! + o(x2n+1)

sin x = x− x3

3! + x5

5! + · · ·+ (−1)n x2n+1

(2n+ 1)! + o(x2n+2)

Remark 1.2.6. We will often work with x0 = 0, based on changes of variables:

1. If x0 ∈ R∗, we put t = x− x0, and then t −→ 0 when x −→ x0.

2. If x0 −→∞, we put t = 1
x
, and then t −→ 0 when x −→∞.

Example 1.2.7. Find LD3(π4 ) for the function x −→ sin(x).

We put t = x− π

4 , then t→ 0 when x→ π

4 . Thus, x = t+ π

4 .

So
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f(x) = sin x = sin(t+ π

4 ) = sin(t) cos(π4 ) + cos(t) sin(π4 ) =
√

2
2 sin(t) +

√
2

2 cos(t).

=
√

2
2

(
t− t3

6 + o(t3)
)

+
√

2
2

(
1− t2

2 + o(t3)
)

=
√

2
2 +

√
2

2 t−
√

2
4 t2 −

√
2

12 t
3 + o(t3)

=
√

2
2 +

√
2

2

(
x− π

4

)
−
√

2
4

(
x− π

4

)2
−
√

2
12

(
x− π

4

)3
+ o

((
x− π

4

)3
)

.

Example 1.2.8. Find LDn(1) for the function x −→ ex.

We put t = x− 1, then t→ 0 when x→ 1. Thus, x = t+ 1. Thus

ex = e

(
1 + y + y2

2! + · · ·+ yn

n! + o(yn)
)

= e

(
1 + (x− 1) + (x− 1)2

2! + · · ·+ (x− 1)n
n! + o((x− 1)n)

) .

1.2.5 Operation on Limited Development

• Sum: If f admits a LDn(0): f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + o(xn),

and g also admits a LDn(0): g(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n + o(xn).

Then f + g admits a LDn(0), given by the sum of the two expansions:

(f + g)(x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x2 + · · ·+ (an + bn)xn + o(xn).

Example 1.2.9. Find the LD4(0) of ln(1 + x) + ex.

As

ln(x+ 1) = x− x2

2 + x3

3 −
x4

4 + o(x4)

ex = 1 + x+ x2

2 + x3

6 + x4

24 + o(x4)

Hence: ln(1 + x) + ex = 1 + 2x+ x3

2 −
5x4

24 + o(x4)
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• Product: If f admits a LDn(0): f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + o(xn),

and g also admits a LDn(0): g(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n + o(xn).

Then the product fg admits a LDn(0), obtained by retaining only the monomials of

degree at most n in the expansion of the product:

(a0 + a1x+ a2x
2 + · · ·+ anx

n) (b0 + b1x+ b2x
2 + · · ·+ bnx

n).

Example 1.2.10. Find LD3(0) of x −→ sin(x) cos(x).

We have

cos(x) = 1− x2

2 + o(x3)

sin(x) = x− x3

6 + o(x3)

Then, we develop the product, only considering terms of order 3 or less:

cos(x) sin(x) =
(

1− x2

2 + o(x3)
)(

x− x3

6 + o(x3)
)

= x− 2x3

3 + o(x3)

• Quotient: If f admits a LDn(0): f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + o(xn),

and g also admits a LDn(0): g(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n + o(xn), with b0 6= 0.

Then f

g
admits a LDn(0), obtained by performing the division according to increasing

degrees, up to order n, of the polynomial (a0 +a1x+a2x
2 + · · ·+anx

n) by the polynomial

(b0 + b1x+ b2x
2 + · · ·+ bnx

n).

Example 1.2.11. Let us compute LD5(0) for x −→ tan(x) = sin(x)
cos(x)

We have

sin(x) = x− x3

6 + x5

120 + o(x5)

cos(x) = 1− x2

2 + x4

24 + o(x5)

Thus,
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tan(x) = sin(x)
cos(x) =

x− x3

6 + x5

120 + o(x5)

1− x2

2 + x4

24 + o(x5)

Then, we develop the division according to increasing degrees up to order 5:

x.png

Therefore, tan(x) = x+ x3

3 + 2x5

15 + o(x5)

• Composition If f admits a LDn(g(0)):

f(x) = a0 + a1(x− g(0)) + a2(x− g(0))2 + · · ·+ an(x− g(0))n + (x− g(0))nε(x),

and g also admits a LDn(0): g(x) = b0 + b1x+ · · ·+ bnx
n + xnε(x).

Then, f ◦ g admits a LDn(0), obtained by substituting the limited development of g into

that of f and keeping only the monomials of degree n or less.

Example 1.2.12. Let us compute LD3(0) for x −→ sin
( 1

1− x − 1
)
.

Since,

1
1− x − 1 = −x+ x2 − x3 + o(x3)

sin(x) = x− x3

6 + o(x3)

Then, we compose, considering only terms of order 3 or less:
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sin
( 1

1− x − 1
)

= −x+ x2 − x3 − 1
6(−x3) + o(x3)

= −x+ x2 − 5x3

6 + o(x3)

• Differentiability: If f : I −→ R admits a LDn+1(0) and f is differentiated at least n+1

times, then f ′ admits a LDn(0), obtained by differentiating the limited development of

f .

Example 1.2.13. compute LD3(0) for x −→ 1
(1− x)2 .

Since 1
(1− x)2 =

( 1
1− x

)′
, and 1

1− x = 1 +x+x2 +x3 +x4 + o(x4). Derive the LD4(0)

of 1
1− x , we obtain LD3(0) for 1

(1− x)2 :

1
(1− x)2 = 1 + 2x+ 3x2 + 4x3 + o(x3).

• Integration: If f : I −→ R admits a LDn(0), and f is integrable on I, then f admits a

LDn+1(0), obtained by integrating the limited development of f . i.e: if

f(x) = a0 + a1x+ · · ·+ anx
n + xnε(x), where lim

x→0
ε(x) = 0

then

F (x) =
∫ x

0 f(t)dt = a0x+ a1

2 x
2 + · · ·+ an

n+ 1x
n+1 + xn+1τ(x), where lim

x→0
τ(x) = 0.

1.2.6 Generalized LD

Let f be a function defined in the neighborhood of 0 except possibly at 0. Suppose that f does

not admit a limited expansion in the neighborhood of 0 but the function xαf(x) (α positive

real) admits a limited development in the neighborhood of 0 then for α 6= 0

xαf(x) = a0 + a1x+ · · ·+ anx
n + o(xn)

Hence f(x) = 1
xα

(a0 + a1x+ · · ·+ anx
n + o(xn)).

this expression is called the generalized limited development in the neighborhood of 0.
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Example 1.2.14. Consider the function f(x) = 1
x− x2 . The function f does not admit a

LD(0) because lim
x→0

f(x) = +∞. But

xf(x) = x.
1

x− x2 = 1
1− x = 1 + x+ x2 + · · ·+ xn + o(xn).

The generalized limited expansion of f is

f(x) = 1
x

(1 + x+ x2 + · · ·+ xn + o(xn))

= 1
x

+ 1 + x+ · · ·+ xn−1 + o(xn−1)

Exercise: Find the LD4(0) of the following functions:

1. f(x) = x

sin(x) .

2. g(x) = 1
cos(x) .

3. h(x) = ln(1 + x)
1 + x

.

4. k(x) = ecos(x)
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