Contents

1	Tay	lor's F	ormula and Limited Development	2
	1.1	Taylor	's Formula	2
		1.1.1	Taylor's Formula	2
		1.1.2	Taylor's Theorem	3
		1.1.3	Taylor's three formulas	4
	1.2	Limite	ed Development	6
		1.2.1	Developments limited to the neighborhood of 0 $\ldots \ldots \ldots \ldots \ldots \ldots$	6
		1.2.2	Properties of Limited Development	6
		1.2.3	Obtaining Limited Development Using the Taylor-Young Formula	7
		1.2.4	Limited Development of usual Functions	8
		1.2.5	Operation on Limited Development	9
		1.2.6	Generalized LD	12

| Chapter

Taylor's Formula and Limited Development

The limited development $LD_n(x_0)$ is useful in many areas of mathematics and physics, including solving differential equations, computing integrals, evaluating limits, and analyzing the local behavior of a function along with its polynomial approximation.

1.1 Taylor's Formula

1.1.1 Taylor's Formula

The Taylor formula allows the approximation of a function that is differentiable multiple times in the neighborhood of a point by a polynomial whose coefficients depend only on the derivatives of the function at that point.

Definition 1.1.1. A function that is continuous on [a, b] and differentiable at $x_0 \in]a, b[$ can be expressed in a neighborhood of x_0 as follows

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + R(x),$$

where $R(x) = \varepsilon(x)(x - x_0)$, and $\lim_{x \to x_0} \varepsilon(x) = 0$, This shows that if f is differentiable, then f can be approximated by a polynomial of degree 1 (a line).

Example 1.1.2. Consider the function $f = e^x$, and $x_0 = 0$. f can be written as

$$f(x) \simeq f(0) + (x - 0)f'(0) = x + 1$$

Taylor's formula generalizes this result by showing that functions that are n-times differentiable can be approximated in a neighborhood of x_0 by polynomials of degree n, that is to say

$$f(x) = \sum_{\substack{k=0 \ p_n(x)}}^n \frac{f^{(k)(x_0)}(x-x_0)^k}{k!} + R_n(x),$$

= $f(x_0) + (x-x_0)f'(x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x),$

where $R_n(x)$ is the remainder of order n, such that

$$R_n(x) = \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + \cdots$$

= $\varepsilon(x)(x - x_0)^n$ and $\lim_{x \to x_0} \varepsilon(x) = 0.$

1.1.2 Taylor's Theorem

Let f and $g: [a, b] \longrightarrow \mathbb{R}$ be two functions satisfying the following conditions:

- 1. $f \in C^n([a, b])$, and $f^{(n)}$ is differentiable on]a, b[.
- 2. The function $g \in C([a, b])$ and it is differentiable on]a, b[and $\forall x \in]a, b[$, $g'(x) \neq 0$, for $x_0 \in [a, b]$: then $\forall x \in [a, b]$, $x \neq x_0$ we have:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x_0, x).\dots(*)$$

= $\sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + R_n(x_0, x)$
such that $R_n(x_0, x) = \frac{f^{(n+1)}(c)(x - c)^n g(x)g(x_0)}{n! g'(c)}, \ c \in]x, x_0[\dots(**)]$

- The expression (*) is called the Taylor formula with generalized remainder (**).
- he choice of different functions g satisfying condition (**) leads to different forms of the remainder $R_n(x_0, x)$.

1.1.3 Taylor's three formulas

Notation 1.1.3. Let I = [a, b] be an interval of \mathbb{R} , x_0 be an interior point of I, and let $f: I \longrightarrow R$ be a function. We fix a natural number n.

We say that a function is of class C^n on I if it is n times differentiable on I, and its n-th derivative is continuous on I.

Taylor-Lagrange

Theorem 1.1.4. Let f be of class C^{n+1} on I, and $x_0 \in [a, b]$. For all $x \in [a, b]$, $x \neq x_0$, we have:

 $f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}, \ c \in]x, x_0[.$ The term $\frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$ is called the Lagrange remainder.

Example 1.1.5. 1. Consider the function sin(x). The **Taylor-Lagrange** formula up to order 3 in the neighborhood of 0 is written as follows

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^4}{4!}\cos(c)$$

2. Consider again $x \longrightarrow e^x$. The **Taylor-Lagrange** formula up to order 4 in the neighborhood of 0 is written follows

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!}e^{c}$$

Taylor-Maclaurin

If we set $x_0 = 0$ in Taylor-Lagrange's formula, we obtain Maclaurin's formula

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}, \quad 0 < \theta < 1.$$

Taylor-Young

Theorem 1.1.6. Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function, and let $x_0 \in [a, b]$, suppose that $f^{(n)}(x_0)$ exists and finite, then $\forall x_0 \in [a, b]$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o(x - x_0)^n,$$

the remainder $R_n(x_0, x) = o(x - x_0)^n$ is called Young's remainder, and it satisfies the following property:

$$\lim_{x \to x_0} \frac{R_n(x_0, x)}{(x - x_0)^n} = 0$$

By setting $\varepsilon(x) = \frac{R_n(x_0, x)}{(x - x_0)^n}$ for $x \neq x_0$ and $\varepsilon(x_0) = 0$ we obtain the Young remainder in the following form: $R_n(x_0, x) = \varepsilon(x)(x - x_0)^n$ where $\lim_{x \to x_0} \varepsilon(x) = 0$

If $x_0 = 0$, we obtain the Maclaurin-Young formula

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + x^{n} \varepsilon(x) \quad where \quad \lim_{x \to 0} \varepsilon(x) = 0$$

Example 1.1.7. The Taylor-Young formula for the function sin(x) up to order 2n + 1 at 0 is written as follows

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + x^{2n+1} \varepsilon(x).$$

Indeed, we must calculate the successive derivatives of sin(x) at 0. We have

$$\sin(0) = 0$$
, $\sin'(0) = \cos(0) = 1$, $\sin''(0) = -\sin(0) = 0$,...

More generally, for all $k \in \mathbb{N}$ we have

$$\sin^{(2k)}(0) = 0$$
, and $\sin^{(2k+1)}(0) = (-1)^k \cos(0) = (-1)^k$

hence the result.

1.2 Limited Development

1.2.1 Developments limited to the neighborhood of 0

Definition 1.2.1. Let f be a function defined in the neighborhood of x = 0, possibly except at 0. We say that f admits a limited development of order n in the neighborhood of 0 if there exist real numbers $a_0, a_1, a_2, \dots, a_n \in \mathbb{R}$ and a function ε such that for any non-zero element x of an interval I of \mathbb{R} :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x)$$
$$= P_n(x) + x^n \varepsilon(x)$$

such that $\lim_{x \to 0} \varepsilon(x) = 0.$

Remark 1.2.2. The polynomial $P_n(x)$ is called regular part of the limited development and $x^n \varepsilon(x)$ is remainder or complementary part.

Example 1.2.3. Let $f = \frac{1}{1-x}$. f admits $LD_n(0)$, indeed: Since $1 - x^{n+1} = (1-x)(1+x+x^2+\cdots+x^n)$, we have

$$\frac{1}{1-x} - \frac{x^{n+1}}{1-x} = \frac{1-x^{n+1}}{1-x} = \frac{(1-x)(1+x+\dots+x^n)}{1-x} = 1+x+\dots+x^n,$$

where

$$\frac{1}{1-x} = 1 + x + \dots + x^n + \frac{x^{n+1}}{1-x} = 1 + x + \dots + x^n \frac{x}{1-x},$$

Therefore, the function $f(x) = \frac{1}{1-x}$, $x \neq 1$ admits a limited development of order n at x = 0, with $\varepsilon(x) = \frac{x}{1-x}$, where $\lim_{x \to 0} \varepsilon(x) = 0$.

1.2.2 Properties of Limited Development

• If f admits a $LD_n(x_0)$, then $\lim_{x \to x_0} f(x)$ exists, is finite, and is equal to a_0 . This criterion is generally used to show that a function does not admit $LD_n(x_0)$.

For example the function $\ln(x)$ does not admit $LD_n(0)$, because $\lim_{x\to 0} \ln(x) = -\infty$.

- A function does not necessarily have an $LD_n(x_0)$, but if it does, it is unique.
- Parity
 - Even function The $LD_n(x_0)$ of an even function has a main part that contains only monomials of even degree. That is to say the coefficients $a_{2k+1} = 0$.
 - Odd function The $LD_n(x_0)$ of an odd function has a main part that contains only monomials of odd degree. That is to say the coefficients $a_{2k} = 0$.
- The $LD_n(x_0)$ of a polynomial of degree n is the polynomial itself.

1.2.3 Obtaining Limited Development Using the Taylor-Young Formula

Theorem 1.2.4. If f is of class C^{n-1} in a neighborhood of a and $f^{(n)}(a)$ exists, then f has a limited expansion of order n in a neighborhood of a, given by the Taylor-Young formula

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)$$

where $\lim_{x \to a} \varepsilon(x) + 0.$

particular case: If $f^{(n)} = (0)$ exists then f has the following limited development

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + x^n\varepsilon(x), \quad such \ that \quad \lim_{x \to 0} \varepsilon(x) + 0.$$

Corollary 1.2.5. If $f^{(n)}(0)$ exists and if f admits a limited expansion of order n

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x)$$

then $f(0) = a_0$, $\frac{f'(0)}{1!} = a_1$, $\frac{f''(0)}{2!} = a_2$, \cdots , $\frac{f^{(n)}(0)}{n!} = a_n$.

1.2.4 Limited Development of usual Functions

Below, we show some well-known limited development of common function of order n, at x = 0using Maclaurin's formula :

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\ln(x1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$\frac{1}{1 - x} = 1 + x + x^{2} + x^{3} + \dots + x^{n} + o(x^{n})$$

$$\sqrt{1 + x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} - \dots + (-1)^{n-1} \frac{1 \times 3 \times 5 \times \dots \times (2n - 3)}{2^{n} n!} x^{n} + o(x^{n})$$

$$\frac{1}{\sqrt{1 + x}} = 1 - \frac{x}{2} + \frac{3x^{2}}{8} - \dots + (-1)^{n} \frac{1 \times 3 \times 5 \times \dots \times (2n - 1)}{2^{n} n!} x^{n} + o(x^{n})$$

$$(1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^{2} + \dots + \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} x^{n} + o(x^{n})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

Remark 1.2.6. We will often work with $x_0 = 0$, based on changes of variables:

- 1. If $x_0 \in \mathbb{R}^*$, we put $t = x x_0$, and then $t \longrightarrow 0$ when $x \longrightarrow x_0$.
- 2. If $x_0 \longrightarrow \infty$, we put $t = \frac{1}{x}$, and then $t \longrightarrow 0$ when $x \longrightarrow \infty$.

Example 1.2.7. Find $LD_3(\frac{\pi}{4})$ for the function $x \longrightarrow \sin(x)$. We put $t = x - \frac{\pi}{4}$, then $t \to 0$ when $x \to \frac{\pi}{4}$. Thus, $x = t + \frac{\pi}{4}$. So

$$f(x) = \sin x = \sin(t + \frac{\pi}{4}) = \sin(t)\cos(\frac{\pi}{4}) + \cos(t)\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}\sin(t) + \frac{\sqrt{2}}{2}\cos(t).$$
$$= \frac{\sqrt{2}}{2}\left(t - \frac{t^3}{6} + o(t^3)\right) + \frac{\sqrt{2}}{2}\left(1 - \frac{t^2}{2} + o(t^3)\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}t - \frac{\sqrt{2}}{4}t^2 - \frac{\sqrt{2}}{12}t^3 + o(t^3).$$
$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{4}\left(x - \frac{\pi}{4}\right)^2 - \frac{\sqrt{2}}{12}\left(x - \frac{\pi}{4}\right)^3 + o\left(\left(x - \frac{\pi}{4}\right)^3\right)$$

Example 1.2.8. Find $LD_n(1)$ for the function $x \longrightarrow e^x$.

We put t = x - 1, then $t \to 0$ when $x \to 1$. Thus, x = t + 1. Thus

$$e^{x} = e\left(1 + y + \frac{y^{2}}{2!} + \dots + \frac{y^{n}}{n!} + o(y^{n})\right)$$
$$= e\left(1 + (x - 1) + \frac{(x - 1)^{2}}{2!} + \dots + \frac{(x - 1)^{n}}{n!} + o((x - 1)^{n})\right)$$

1.2.5 Operation on Limited Development

• Sum: If f admits a $LD_n(0)$: $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n + o(x^n)$, and g also admits a $LD_n(0)$: $g(x) = b_0 + b_1x + b_2x^2 + \dots + b_nx^n + o(x^n)$.

Then f + g admits a $LD_n(0)$, given by the sum of the two expansions:

$$(f+g)(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_n + b_n)x^n + o(x^n).$$

Example 1.2.9. *Find the* $LD_4(0)$ *of* $ln(1 + x) + e^x$. *As*

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)$$
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)$$

Hence: $ln(1+x) + e^x = 1 + 2x + \frac{x^3}{2} - \frac{5x^4}{24} + o(x^4)$

Product: If f admits a LD_n(0): f(x) = a₀ + a₁x + a₂x² + ··· + a_nxⁿ + o(xⁿ), and g also admits a LD_n(0): g(x) = b₀ + b₁x + b₂x² + ··· + b_nxⁿ + o(xⁿ). Then the product fg admits a LD_n(0), obtained by retaining only the monomials of degree at most n in the expansion of the product:

$$(a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + b_nx^n)$$

Example 1.2.10. Find $LD_3(0)$ of $x \longrightarrow \sin(x)\cos(x)$.

We have

$$\cos(x) = 1 - \frac{x^2}{2} + o(x^3)$$

$$\sin(x) = x - \frac{x^3}{6} + o(x^3)$$

Then, we develop the product, only considering terms of order 3 or less:

$$\begin{aligned} \cos(x)\sin(x) &= \left(1 - \frac{x^2}{2} + o(x^3)\right) \left(x - \frac{x^3}{6} + o(x^3)\right) \\ &= x - \frac{2x^3}{3} + o(x^3) \end{aligned}$$

Quotient: If f admits a LD_n(0): f(x) = a₀ + a₁x + a₂x² + ··· + a_nxⁿ + o(xⁿ), and g also admits a LD_n(0): g(x) = b₀ + b₁x + b₂x² + ··· + b_nxⁿ + o(xⁿ), with b₀ ≠ 0. Then ^f/_g admits a LD_n(0), obtained by performing the division according to increasing degrees, up to order n, of the polynomial (a₀ + a₁x + a₂x² + ··· + a_nxⁿ) by the polynomial (b₀ + b₁x + b₂x² + ··· + b_nxⁿ).

Example 1.2.11. Let us compute $LD_5(0)$ for $x \longrightarrow \tan(x) = \frac{\sin(x)}{\cos(x)}$ We have

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)$$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$$

Thus,

$$\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)}{1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)}$$

Then, we develop the division according to increasing degrees up to order 5:

$$\begin{array}{c} x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5) \\ x - \frac{x^3}{2} + \frac{x^5}{24} + o(x^5) \\ \hline \\ \hline \\ \frac{x^3}{3} - \frac{x^5}{30} + o(x^5) \\ \hline \\ \frac{x^3}{3} - \frac{x^5}{6} + o(x^5) \\ \hline \\ \frac{2x^5}{15} + o(x^5) \\ \hline \\ \hline \\ 0(x^5) \end{array}$$

x.png

Therefore,
$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$$

• Composition If f admits a $LD_n(g(0))$:

$$f(x) = a_0 + a_1(x - g(0)) + a_2(x - g(0))^2 + \dots + a_n(x - g(0))^n + (x - g(0))^n \varepsilon(x),$$

and g also admits a $LD_n(0)$: $g(x) = b_0 + b_1 x + \dots + b_n x^n + x^n \varepsilon(x)$.

Then, $f \circ g$ admits a $LD_n(0)$, obtained by substituting the limited development of g into that of f and keeping only the monomials of degree n or less.

Example 1.2.12. Let us compute $LD_3(0)$ for $x \longrightarrow \sin\left(\frac{1}{1-x}-1\right)$. Since,

$$\frac{1}{1-x} - 1 = -x + x^2 - x^3 + o(x^3)$$
$$\sin(x) = x - \frac{x^3}{6} + o(x^3)$$

Then, we compose, considering only terms of order 3 or less:

$$\sin\left(\frac{1}{1-x} - 1\right) = -x + x^2 - x^3 - \frac{1}{6}(-x^3) + o(x^3)$$
$$= -x + x^2 - \frac{5x^3}{6} + o(x^3)$$

Differentiability: If f: I → ℝ admits a LD_{n+1}(0) and f is differentiated at least n+1 times, then f' admits a LD_n(0), obtained by differentiating the limited development of f.

Example 1.2.13. compute
$$LD_3(0)$$
 for $x \longrightarrow \frac{1}{(1-x)^2}$.
Since $\frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)'$, and $\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + o(x^4)$. Derive the $LD_4(0)$
of $\frac{1}{1-x}$, we obtain $LD_3(0)$ for $\frac{1}{(1-x)^2}$:
 $\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + o(x^3)$.

• Integration: If $f: I \longrightarrow \mathbb{R}$ admits a $LD_n(0)$, and f is integrable on I, then f admits a $LD_{n+1}(0)$, obtained by integrating the limited development of f. i.e. if

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon(x)$$
, where $\lim_{x \to 0} \varepsilon(x) = 0$

then

$$F(x) = \int_0^x f(t)dt = a_0 x + \frac{a_1}{2}x^2 + \dots + \frac{a_n}{n+1}x^{n+1} + x^{n+1}\tau(x), \text{ where } \lim_{x \to 0} \tau(x) = 0.$$

1.2.6 Generalized LD

Let f be a function defined in the neighborhood of 0 except possibly at 0. Suppose that f does not admit a limited expansion in the neighborhood of 0 but the function $x^{\alpha}f(x)$ (α positive real) admits a limited development in the neighborhood of 0 then for $\alpha \neq 0$

$$x^{\alpha}f(x) = a_0 + a_1x + \dots + a_nx^n + o(x^n)$$

Hence $f(x) = \frac{1}{x^{\alpha}} (a_0 + a_1 x + \dots + a_n x^n + o(x^n)).$

this expression is called the generalized limited development in the neighborhood of 0.

Example 1.2.14. Consider the function $f(x) = \frac{1}{x - x^2}$. The function f does not admit a LD(0) because $\lim_{x \to 0} f(x) = +\infty$. But

$$xf(x) = x \cdot \frac{1}{x - x^2} = \frac{1}{1 - x} = 1 + x + x^2 + \dots + x^n + o(x^n).$$

The generalized limited expansion of f is

$$f(x) = \frac{1}{x} (1 + x + x^2 + \dots + x^n + o(x^n))$$

= $\frac{1}{x} + 1 + x + \dots + x^{n-1} + o(x^{n-1})$

Exercise: Find the $LD_4(0)$ of the following functions:

1.
$$f(x) = \frac{x}{\sin(x)}$$
.
2. $g(x) = \frac{1}{\cos(x)}$.
3. $h(x) = \frac{\ln(1+x)}{1+x}$.

4.
$$k(x) = e^{\cos(x)}$$