
Algorithmics and data structures 2 Practical work 1st year Computer Science

1

Practical Work series N°1: Subroutines

1. Introduction:

 Subroutines allow programs to be divided into modules to facilitate understanding and maintenance of programs and also to avoid repetition in the

code.

 As we saw in the course, there are two types of subroutines: procedures and functions.

 Unlike the algorithmic language, the C++ language generalizes the structure of the function across both types of subroutines.

 To do this, we will start by studying the functions in C++ language, then look at the structure of the procedures.

2. Functions:

The general structure of a function in C++ language is as follows:

function_return_type function_name (type _1 variable1 , type_2 variable2 typeN variableN)

{

< Declaration of function variables >

<instructions1>;

<instructions2>;

...

return (result); /* To return the result */

}

Example :

An algorithm that reads three non-zero positive numbers A, B, and C and calculates and displays the following sum: A! +B! +C!

Algorithmics and data structures 2 Practical work 1st year Computer Science

2

Algorithmic Language C++ language

Algorithm Example
A ,B,C , Sum: integers
//---
/* Definition of factorial function */
Function Factorial (N: integer): integer ;

Result , fact, i : integer;
Begin

fact ← 1;

For i = N to 1 step = -1 do

fact ← fact * i ;

End for ;

Result ← fact ;

Return (Result);
END ;
//---
/* Main program */
Begin
Read (A ,B,C);

Sum ← Factorial(A) + Factorial(B) + Factorial(C);

Write(Sum);

END.

#include <iostream>
using namespace std;
//---
/* Definition of factorial function */
int Factorial (int N)
{
int Result , fact, i ;
fact =1;
for (i =N; i >=1; i = i-1)
{
fact = fact * i ;
}
Result = fact;
return (Result);
}
//---

/* Main program main() */

int main ()
{ int A,B,C, Sum;
cin >>A>>B>>C;
Sum = Factorial(A) + Factorial(B) + Factorial(C);
cout << Sum;
getchar ();
return 0;

}

Practical exercise 1:

Write a C++ program that reads three non-zero positive numbers A, B, and C and calculates and displays the following sum: A! + B
c

Algorithmics and data structures 2 Practical work 1st year Computer Science

3

3. Procedures:

A procedure in C++ is represented by a function with void return type (Nothing). The output parameters of procedures are passed by variable (address)

using the '&' operator and are defined using the '*' operator.

Example 1: A program that displays the sum and product of two integers A and B.

Algorithmic Language C++ language

Algorithm Example1
A ,B,C ,Sum,Product: integer;
//---
/* Definition of the Calculation procedure */
procedure calculation (X1 , X2: integer; var S: integer, var P: integer);
Begin

S ← X1 + X2;

P ← X1 * X2;

END ;
//---
/* Main program */
Begin
Read (A ,B);
calculation (A, B, Sum ,Product); // procedure call
Write(Sum, Product);

END.

#include <iostream> _
using namespace std;
//---
/* Definition of the Calculation procedure */
void calculation (int X1, int X2, int & S, int & P)
{
 S = X1 + X2;
 P=X1*X2;
}
//---

/* Main program main() */

int main ()
{ int A,B, Sum, Product;
cin >>A>>B>>C;
calculation (A,B, Sum, Product); // procedure call
cout << Sum << Product ;
getchar ();
return 0;

}

Practical exercise 2:

Write a C++ program that permutes two integer variables A and B using a procedure.

Result parameters

(passage by variable)

Algorithmics and data structures 2 Practical work 1st year Computer Science

4

4. Reusing subroutines

The main program and functions and procedures can be put into separate files, allowing multiple programs to use the same subroutine.

For example, we can put the main program in the “ PW.cpp ” file and the factorial program in the “ PW_functions.cpp ” file as follows:

The ''PW.cpp'' file The “PW_ functions.cpp” file

#include <iostream> _
#include ''PW_functions.cpp''
using namespace std;

/* Program main main() */

int main ()
{ int A,B,C, Sum;
cin >>A>>B>>C;
Sum = Factorial (A) + Factorial (B) + Factorial (C);
cout << Sum;
getchar ();
return 0;

}

/* Definition of factorial function */
int Factorial (int N)
{
int Result , fact, i ;
fact =1;
for (i =N; i >=1; i = i-1)
{
fact = fact * i ;
}
Result = fact;
return (Result);
}

Noticed :

You must put the “ PW.cpp ” and “ PW _functions.cpp ” files in the same directory before compiling the “PW.cpp” program.

Practical exercise 3:

Repeat the last two practical exercises by putting the functions Factorial , power, and permute, in three deferent files and the main program in other file.

To indicate where is the Factorial function

