
1

Chapter 1 : Subroutines: Procedures and Functions

1. Introduction

Solving a computer problem is broken down into 4 Phases: Analysis, algorithm
writing, programming, compilation and execution. So, An algorithm is a solution
to a class of problems. Sometimes the problem to be solved is too sophisticated
(complicated), i.e.: It becomes difficult to have a global vision to solve this
problem.
The program (algorithm) becomes large (in a single block) , and generally very
difficult to understand, find errors, develop and read . In this case, it is advisable
to break down the problem into sub-problems, then find a solution to each.

Example : (problem and sub-problems)

We want to create a program allowing us to read the exam notes, tutorials and
practical work of students in the introductory algorithmic module, calculate their
averages and say for each student whether they are admitted or postponed in this
module?
� This problem can be broken down into 3 sub-problems:

� Sub-problem 1 : reading student notes
� Sub-problem 2 : calculate student averages
� Sub-problem 3 : say if student is admitted or deferred

2. Subprograms (modules) :

� A subroutine (sub-algorithm) is a program (algorithm) which describes the
solution to a sub-problem.

� Schematically, a module (subprogram) is represented by a black box which has
inputs, outputs and a very specific role as follows:

Role : ……………..

Example 1:

We want to write an algorithm allowing us to read the grades (exam, Directed and
practical work) of students in the Algorithmics and Data Structures 1 module,
calculate their averages and say for each student whether they are admitted or
adjourned for this module.
Do the necessary modular division?

Module 1:

Role : read a student's notes

Module 2:

Role : Calculate the average from the grades

Module 3:

Role : Say if the student is admitted or adjourned

Example 2:

deficient number is a natural integer number n which is strictly greater than the sum
of its strict divisors. We want to write an algorithm that reads an integer X and
displays all deficient numbers less than X.
Do the necessary modular division?

Module 1:

Name of
Module

(sub-algorithm)

Data parameters
(input)

Result
parameters
 (output)

Calculate_A
PW : real

DW : real

EX : real

AVG : real

Moyenne : real Write
Adm-Ajn

PW : real

DW : real

EX : real

Read_Note

S : integer

Role: calculate the sum of the strict divisor of N

Cal_Sum_Div N : integer

2

Module 2:

Module 3:

Noticed :

� When developing a modular layout we are not looking for the answer to the
question how to do it? But sooner What to do ? ;that means identification of the
precise role of each module.

� There are two types of subprograms (modules): procedures and functions.

2.1. Procedures :

� A procedure is a subprogram (sub-algorithm), which can be called (used) in
another program (algorithm) or in different places of the same program
(algorithm).

� A procedure can be called as an instruction in a program (algorithm) through its
name.

a) Declaration of a procedure:

� A procedure is defined in the declarative part of the algorithm.
� A procedure consists of a head, variable declarations (if they exist), and a

body .

Syntax:

Procedure <procedure name> (List of parameters)

<Declaration part>

Begin

<Body of the procedure>

End ;

The parameters of a procedure : The parameters are variables . Each parameter is
described by:

� A name,
� A type,
� Transmission mode: data parameter, result parameter, or data/result

parameter.

Example :

Procedure divide (A: int ; B: int ; Var Q: int ; Var R: int);
Procedure Swap (Var C, D: integer);

The data parameters: A, B.
The result parameters: Q, R.
The data/result parameters: C, D.

For the previous example:

Procedure calculate_A (DW, TW, EX: real; Var Avg: real);
Procedure verify_def(N: integer; Var R: boolean);

Noticed :

Var keyword indicates that the parameters are outputs (results), and which can also
be inputs.

result
parameter

result
parameter

data
parameter

data
parameter

data/result
parameter

 R : boolean

Role : verify if an integer N is deficient or not

Verify_Def N : integer

Role : Read an integer X and display all deficient number less than X

Display_Def X : entier

3

Example :

Solution 1: without using a
procedure

Solution 2: Using a procedure

Algorithm Addition
A, B, som: real;
Begin
Read (A, B);
som �A+B ;

Write (som);

END.

Algorithm Addition
A, B, sum: real;
procedure add (X, Y: real; Var S: real)

Begin
S �X+Y ;
END;
Begin // main program
Read (A, B);
add (A, B, sum);
Write (sum);

END.

b) Calling a procedure:

� A procedure is called by its name:
� The parameters indicated in the declaration of the subroutines are

called “Formal Parameters”.
� The parameters specified in the subroutine call are called
� “Actual parameters” .

� During the call, the order of the effective parameters must conform to that
of the formal parameters.

Example : previous example

X, Y: formal parameters.
A, B: effective parameters.

2.2. Functions:

� A function is a special case of procedures, unlike the procedure; the
function must have a type, because it must return a value as output.

a) Declaration of a function:

Function <function name> (List of input parameters): Type ;

 <Declaration part>

Begin

 <Function body>

 Return (output value);

End ;

b) Function call:

Calling a function is done in the same way as a procedure except that the
function name directly contains the return value (output value).

Examples: function Square (X: real) : real; returns the square of the number

For the previous examples:
function AVG (DW, TW, EX: real): real;
Function verify_def (N: integer): boolean;

Write an algorithm that adds two real numbers?

Solution 1: classic solution Solution 2: Using the function

Algorithm Addition
A, B, sum: real;
Begin
Read (A, B);
sum �A+B ;

Write (sum);

END.

Algorithm Addition
A, B, sum: real;
function add (X, Y: real): real;
S: real;
 Begin
S �X+Y ;
Return (S);
End;
Begin
Read (A, B);
sum � add (A,B);
Write (sum);

END.

Call for the

procedure

4

Noticed :

� The head of a function always ends with the type of the value returned by
the function.

� The body of a function always ends with the Return (output value)
instruction which returns the output value to the calling program.

3. Global variables and local variables:

� A global variable is a variable declared in the main program (algorithm)
and can be used by one or more procedures or functions.

� A local variable is a variable declared and used in a subprogram
(procedure or function).

Example :
util-Proc algorithm
A, B: integer;
Procedure Swap (Var x, y: real);
Z: real;
Begin
Z �x ;
x �y ;
y �Z ;
End;
Begin
Read (A, B);
Swap (A, B);
Write (A, B);
END.

Global variables: A, B.
Local variables : Z.

4. Passing the parameters:
� It should be remembered that a variable in a program is a memory space

intended to store a value.

� A variable has a name (identifier) and a memory address.

Variable1 (address1) Value1
Variable2 (address2) Value2

.

.

.

.

.

.
Variablen (addressn) Value n

� The identifiers represent the parameters in the declaration of the

subroutines are not the same at the call.
� There are two types of parameter passing (transmissions):

a) Passage by value
b) Passing by variable (or by addresses)

4.1. The passage by value:

� The values of the effective parameters are copied into the formal
subroutine parameters without affecting the original values.

� In this case, the local variables in the called subroutine are used.
� Modifying local variables in the subroutine does not modify the

variables passed as parameters, because these modifications only apply
to a copy of these variables.

Example :
Algorithm P_Value
A, B: real;
Procedure Swap (X, Y: real);
Z: real;
Begin
Z �X
X �Y ;
Y �Z ;
End;
Begin
A �3;
B �5;

Global
variables

Local
variables

Permutation des
valeurs

5

Swap (A, B);
Write (A, B);
END.

Parameters are passed by value:

� The values of the effective parameters 'A' and 'B' are copied into the
formal parameters 'X' and 'Y' when calling: A → X, B → Y

� Modifications (permutation) are made only on local variables (X, Y, Z).
� Finally, the values of the formal parameters 'X' and 'Y' are restored in

the effective parameters 'A' and 'B'.

4.2. The passage by address:

� This technique consists of not just passing the values of the actual parameters,
but of passing the variables themselves (its location in memory).

� There is therefore no more copying, any modification of the formal
parameters in the “called subroutine” results in the modification of the
effective parameters (variables passed as parameters).

Example :

Algorithm P_Variable
A, B: integer;
Procedure Swap (Var x, y: real);
Z: real;
Begin
 Z �x ;
 x �y ;
 y �Z ;
End;
Begin //main program
A �3;
B �5;
Swap (A, B);
Write (A, B);
END.
� The addresses of the effective parameters 'A' and 'B' are passed to the

procedure during the call.
� Modifications (permutation) are made to variables A, B.

5. Differences between procedures and functions

Procedure Function

The head:

Procedure <Proc_Name> (list of
parameters);

The head:

Function <Function_Name> (list of
parameters) : <Type>;

Usage example : (call)

 Proc_name (parameter list);

Usage example : (call)

 Assignment : x�f_name (parameter list);
 Write : Write (f_name (parameter list));

Passing parameters:

- Passing by value
- Passage by address

Passing parameters:

- Passing by value

6. Benefits of using procedures and functions

� Here are some advantages of modular programming:

� Minimizing code duplication
� Better readability
� Reduced risk of errors
� Possibility of selective tests: (module by module)
� Reuse of existing modules: It is easy to use modules that you have

written yourself or that have been developed by other people.
� Ease of maintenance: A module can be changed or replaced without

having to touch the other modules of the program.
� Promoting teamwork: A program can be developed as a team by

dividing and assigning modules to different people or groups of
people.

A = 3
B = 5

Example 1: Write an algorithm that read three non-zero positive numbers A,
B, C then calculates and displays the following sum: (A! + B!+ C!)!

Solution1 Solution2
Algorithm example1
A, B, factA, factB, factC, Sum, fact :
integers;
Begin
Read (A, B);
factA ← 1;
For i = 1 to A Do
factA ← factA * i;
End for;
factB ← 1;
For i = 1 to B do
factB ← factB * i;
End for;
factC ← 1;
For i = 1 to C do
factC← factC * i;
End for;
Sum ← factA + factB + factC;
fact ← 1 ;
For i = 1 to sum do
fact ← fact * i;
End for
Write (fact);
END.

Algorithm example1
A, B, C: integers;
function Factorial (N: integer;): integer;
factN, i: int;
Begin
factN ← 1;
For i = 1 to N do
factN ← factN* i;
End for;
Return (fact);
End;
Begin
Read (A, B);
Write (factorial (factorial (A) +factorial
(B) factorial (C)));
END.

7. Nested calls

 7.1definition

 The nested call consists of call a function in another function.

6

zero positive numbers A,
B, C then calculates and displays the following sum: (A! + B!+ C!)!

Solution2
example1

Factorial (N: integer;): integer;

factorial (factorial (A) +factorial

The nested call consists of call a function in another function.

Example: let be the following functions:

F(x) = 3 x 2

G(x) = 7 x

H(x) = F(x) + G(x)

Q) Write an algorithm that reads a real number
H(a).

Solution:

Algorithm example

A: integers;

 Function F(x1: integer;):integer;

 S: integer;

 Begin

 S�3*x1*x1;

Return (S);

END;

Function G(x2: integer;):integer ;

 S: integer;

 Begin

S�7*x2;

Return (S);

END;

the following functions:

) Write an algorithm that reads a real number a and displays: F(a), G(a) and

Function H(x3: integer;):entire;

 S: entire;

Begin

 S�F(x3)+G(x3);

Return (S) ;

END;

Begin // main program

Read (A);

write (F (A),G(A),H(A));

END.

