Centre Universitaire de Mila

2nd year of Computer Science degree (LMD)

Module : Operating Systems 1

Bessouf Hakim

* Chapter 1:
* Chapter 2:
* Chapter 3:
* Chapter 4:
* Chapter 5:
* Chapter 6:
* Chapter 7:

Program

Introduction to Operating Systems

Basic Mechanisms of Program Execution
Physical Input/Output Management
Central Processor Management

Central Memory Management
Peripheral Management

File Management

Chapitre 1
Introduction to Operating Systems

What is an Operating System?

* Definition: "An OS is system software that manages hardware
and software resources and provides common services for
computer programs.”

* Key functions:
v'Process management
v'Memory management]
v'File management
v'|/O management
v'Security Hardware

Operating System

Why are Operating Systems Important?

* Manages hardware resources
efficiently.

* Provides a user-friendly interface.

* Enables multitasking and resource
sharing.

* Ensures security and protection.

History of Operating Systems

* Open door systems

e Systems with chain monitor
* Batch processing systems
 Multiprogramming systems
* Time sharing systems

* Parallel systems

* Distributed systems

* Personal computer systems
* Real time systems

* Embedded systems

1950s:
Batch
processing
systems

1960s: Time-

sharing
systems
(UNIX)

1980s:
Personal
computers
and GUIs
(Windows,
macQS)

2000s:
Mobile and
distributed
systems
(Android,
i0S)

Types of Operating Systems

Type of OS Description Features Examples
Processes a group of jobs Jobs are collected, processed,
Batch OS without interaction with the and outputted in batches; no | IBM 1401, early mainframe OS
user. real-time interaction.

Time is divided into small

Allows multiple users to share |. . .
P intervals to allocate CPU time to UNIX, Multics

Time-sharing OS .
system resources simultaneously.
each user or process.

Designed for applications that | Predictable and deterministic
Real-time OS require immediate response to | responses; can be hard or soft VxWorks, RTEMS, QNX

external events. real-time.

Multiple machines work
together, sharing resources, and| Google Fuchsia, OpenMosix
processing tasks.

Coordinates multiple computers

Distributed OS e
to act as one unified system.

Manages and provides resources

Focuses on communication and Novell NetWare, Microsoft
Network OS for networked computers and

. resource sharing over networks. Windows Server
devices.
Designed specifically for mobile | Optimized for touch interfaces,
Mobile OS devices like smartphones and mobility, and low power Android, iOS, Windows Phone

tablets. consumption. 7

Eevolution of Computer Systems

* Single user mode systems

e Systems with Job Monitor
* Batch processing systems

* Multiprogramming systems
e Time sharing systems

* Parallel systems

* Distributed systems

* Personal computer systems
* Real time systems

* Embedded systems

Single user mode systems

These computer systems consist of a card reader for

reading programs and data, a computer for —alEE
executing the programs, and a printer for & ___ |
outputting the results. These systems do not use an < aaaalt™ Ordinateur
operating system. To run a program, the user Utlisateur Lorood 48
follows these steps: P4 .
> Code the source program on punched cards
(written in Fortran or assembly language). A [e imprimante]
> Load the card reading program. ¢
> Compile the source program.) (=

Reés ultats
> Insert the data cards into the card reader. ; ﬁ ﬁ
> Execute the compiled program. Utilisateurs en attente

> Retrieve the results from the printer.

Systems with Job Monitor

In these systems, an operator simply loads the job cards into the
card reader and retrieves the results from the printer.

The job control monitor (a special program) is responsible for
reading, loading, compiling, and executing the programs, thereby
saving time.

The job control monitor is the predecessor of modern operating Ordinateur

systems. It resides in memory and manages card reading as well as C -‘- .

program execution. Moniteur
d'enchainement

To control the execution of programs, special control cards are

used, which are interpreted by the job control monitor. s Sa

I ﬁ Lecteur de Imprimante
Ifl—l I-l EF” ﬁ cartes
Opérateur ¢

Résgoltats

Batch processing systems

In these systems, specialized intermediate machines

handle input/output operations. These machines p——

read the job cards and store them on a magnetic

tape. Then, the job control monitor executes these

jobs one by one and saves the results on another e
magnetic tape. A third machine then prints the

results on paper. —

Since the magnetic tape reader is faster than the

card reader, data reading and result writing are

accelerated. Additionally, card reading, result
printing, and job execution can occur =
simultaneously, improving overall performance.

Batch Operating Systems

* Definition: Jobs are executed in batches without user interaction.
* Example: Early mainframe systemes.

* Pros: Efficient for large-scale tasks.

* Cons: No user interaction, long wait times.

Batch

\ '\006
J0b T
Operator Computer
or ki .
/Obs \

e Batch

Time-Sharing Operating Systems

* Definition: Multiple users share system _ Multitasking or
Time-Sharing Operating System

resources simultaneously.
* Example: UNIX.

* Pros: Efficient resource utilization,
Interactive.

* Cons: Complex scheduling, potential for
performance issues.

13

Real-Time Operating Systems

 Definition: OS designed for
real-time applications (e.g.,
robotics, embedded systems).

* Example: VxWorks, FreeRTOS.

* Pros: Predictable and fast
response times.

e Cons: Limited functionality,
specialized use cases.

14

Distributed Operating Systems

* Definition: Manages a group of independent computers as a single

system.

* Example: Google’s distributed systems.

* Pros: Scalability, fault tolerance.
* Cons: Complexity, network

Computer 1 Computer 2 Computer 3 Computer 4
1 1
dependency.
Appl. A Application B Appl. C
[1
Distributed system layer (middleware)
Local OS 1 Local OS 2 Local OS 3 Local OS 4

Network

15

Mobile Operating Systems

 Definition: OS designed for mobile devices (e.g., smartphones,

tablets).
* Example: Android, iOS.
* Pros: Portability, touch-friendly interfaces.
* Cons: Limited hardware resources, security challenges.

Lo e

8lack8erry i0S

V\Sngg\évs (’ @ \/@OV‘.

16

Multiprogramming systems

Travail 3

Travail 2

Travail 1

SE

Partitions Mémoire

Parallel systems

UC 1

UcC 2

UC 3

UCn

MC

Péeriphérique

Personal computer systems

p‘f!mumuu - .h
o ——

[R—

Embedded systems

20

 Monolithic kernel

* Microkernel

* Layered architecture

e Modular architecture

OS Structures

21

Monolithic Kernel Microkernel

e Definition: All OS services run in ¢ Definition: Minimal kernel with most

kernel space. services running in user space.
* Example: Linux. * Example: macOS (based on Mach
* Pros: High performance. kernel).
e Cons: Less modular, harder to * Pros: Modular, easier to maintain.
maintain. ~* Cons: Performance overhead.
Application Application
4 A 4 A
om— ! !

User
VFS, System calls

Application Unix Device | File

IPC Server | Driver = Server IPC, File System

Scheduler virtual Memory
Kernel

Space

Basic IPC, Virtual Memory,
Scheduling |

Hardware | Hardware

Microkernel Monolithic Kernel

Device Driver, Dispatcher

22

Layered Architecture

e Definition: OS is divided into layers, each with specific functionality.

* Pros: Easy to debug and maintain.

* Cons: Performance overhead due to layer interactions.

[ts six layers are as follows:

layer 5:

USEer programs

layer 4:

buftfering for input and outp

EN

layer 3:

Process management

7o
/ .
/ -
/ P
r y.
¥
rd
/ §

layer 2:

memory management

layer 1:

CPU scheduling

.

layer O:

hardware

\
N

.
~
N
\

layer N
user mterface

Iayer 1

layer O
hardware

23

Modular Architecture

e Definition: OS is built as a set of modules
that can be loaded dynamically.

 Example: Modern Linux kernels.
* Pros: Flexible, easy to extend.

e Cons: Complexity in module
management.

miscellaneous
modules

device and
bus drivers

STREAMS
modules

scheduling
classes

core Solaris
kernel

loadable
System calls
executable
formats

24

System Calls

* Definition: Interface between user programs and the OS.

* Examples: File operations (open, read, write), process control (fork,
exec).

* How they work: User program — System call - Kernel - Hardware.

File System Calls

Kernel Mode
User Mode /
il open(),write() Library Functions [Direct Call J
[User Program >
J (system call interface) Wrapper
Library

A

v

[OS (Kernel) }

[Hardware Resources]

Interrupts

* Definition: Signals from hardware or software to gain the OS’s

attention.

* Types: Hardware interrupts (e.g., keyboard input), software interrupts
(e.g., system calls).

* How they work: Interrupt = Interrupt handler - OS response.

Device

— Interrupt

Device

— Interrupt

Device

—— Interrupt

Device

— Interrupt

Device

— Interrupt

e

—»

Interrupt
Controller

Disable

O

—— Interrupt —O/' o

CPU

CPU Interrupt

Enable/Disable

26

System Calls and Interrupts Together

* How system calls and interrupts work together to manage resources.

* Example: A user program requests a file read (system call), and the
disk sends an interrupt when the data is ready.

_\‘

User Application
) (2] (4]

User Mode User Pru_l:ass »| call system call Return from system Mode bit =1
Executing call

A
. J

~

Kernel

Y

Kernel Mode Execute System
Call

Mode bit =0

{3)

Ms-DOS WINDOWS

Conrdir
Le volume dans le lecteur C n'a pas de nom.
Le numéro de série du volume est 34FB-GGAR

Répertoire de C:zw

1-.11/.2009 1@:34 16 686 additionZ.exe
8,@1,201@ B9:25 <REP> Deu—Cpp B
A?-01-2018 16:55 <REP> HEimEv_38
21-81-2808 @3:33 <REP> PerfLogs
13-82-2018 14:36 <REFP> Program Files *S
18-18-2007 @8:46 <REFP> Programmnes ! S0
19.-88-268% 13:37 <REP> SwSetup o s s =
16-07/2007 16:25 <REP> TC
31.-88-200% 14:27 <REP> tc2 i
19,08,2089 13:29 <REP> Users il
17-82-,2818 @5:39 <REP> Windows

1 fichier<(s) 16 686 octets o

18 Rép<s> 86 936 850 432 octets lihres y , 1ﬁm

. f

CzN2

MacOS

$ ¥ O) Nenlooaw Q

Summary

* OS manages hardware and software resources.

* Types: Batch, time-sharing, real-time, distributed, mobile.
e Structures: Monolithic, microkernel, layered, modular.

e System calls and interrupts enable OS functionality.

29

	Slide 1: Centre Universitaire de Mila 2nd year of Computer Science degree (LMD)
	Slide 2: Program
	Slide 3: Chapitre 1 Introduction to Operating Systems
	Slide 4: What is an Operating System?
	Slide 5: Why are Operating Systems Important?
	Slide 6: History of Operating Systems
	Slide 7: Types of Operating Systems
	Slide 8: Eevolution of Computer Systems
	Slide 9: Single user mode systems
	Slide 10: Systems with Job Monitor
	Slide 11: Batch processing systems
	Slide 12: Batch Operating Systems
	Slide 13: Time-Sharing Operating Systems
	Slide 14: Real-Time Operating Systems
	Slide 15: Distributed Operating Systems
	Slide 16: Mobile Operating Systems
	Slide 17: Multiprogramming systems
	Slide 18: Parallel systems
	Slide 19: Personal computer systems
	Slide 20: Embedded systems
	Slide 21: OS Structures
	Slide 22: Monolithic Kernel
	Slide 23: Layered Architecture
	Slide 24: Modular Architecture
	Slide 25: System Calls
	Slide 26: Interrupts
	Slide 27: System Calls and Interrupts Together
	Slide 28
	Slide 29: Summary

