
Centre Universitaire de Mila

2nd year of Computer Science degree (LMD)

Module : Operating Systems 1

Bessouf Hakim

1

Program

• Chapter 1: Introduction to Operating Systems

• Chapter 2: Basic Mechanisms of Program Execution

• Chapter 3: Physical Input/Output Management

• Chapter 4: Central Processor Management

• Chapter 5: Central Memory Management

• Chapter 6: Peripheral Management

• Chapter 7: File Management

2

Chapitre 1
Introduction to Operating Systems

3

What is an Operating System?

• Definition: "An OS is system software that manages hardware
and software resources and provides common services for
computer programs."

• Key functions:

✓Process management

✓Memory management

✓File management

✓I/O management

✓Security

4

Why are Operating Systems Important?

• Manages hardware resources
efficiently.

• Provides a user-friendly interface.
• Enables multitasking and resource

sharing.
• Ensures security and protection.

5

History of Operating Systems

• Open door systems
• Systems with chain monitor
• Batch processing systems
• Multiprogramming systems
• Time sharing systems
• Parallel systems
• Distributed systems
• Personal computer systems
• Real time systems
• Embedded systems

1950s:
Batch
processing
systems

1960s: Time-
sharing
systems
(UNIX)

1980s:
Personal
computers
and GUIs
(Windows,
macOS)

2000s:
Mobile and
distributed
systems
(Android,
iOS)

6

Types of Operating Systems
Type of OS Description Features Examples

Batch OS
Processes a group of jobs

without interaction with the
user.

Jobs are collected, processed,
and outputted in batches; no

real-time interaction.
IBM 1401, early mainframe OS

Time-sharing OS
Allows multiple users to share

system resources simultaneously.

Time is divided into small
intervals to allocate CPU time to

each user or process.
UNIX, Multics

Real-time OS
Designed for applications that
require immediate response to

external events.

Predictable and deterministic
responses; can be hard or soft

real-time.
VxWorks, RTEMS, QNX

Distributed OS
Coordinates multiple computers

to act as one unified system.

Multiple machines work
together, sharing resources, and

processing tasks.
Google Fuchsia, OpenMosix

Network OS
Manages and provides resources

for networked computers and
devices.

Focuses on communication and
resource sharing over networks.

Novell NetWare, Microsoft
Windows Server

Mobile OS
Designed specifically for mobile
devices like smartphones and

tablets.

Optimized for touch interfaces,
mobility, and low power

consumption.
Android, iOS, Windows Phone

7

Eevolution of Computer Systems

• Single user mode systems
• Systems with Job Monitor
• Batch processing systems
• Multiprogramming systems
• Time sharing systems
• Parallel systems
• Distributed systems
• Personal computer systems
• Real time systems
• Embedded systems

8

Single user mode systems

These computer systems consist of a card reader for
reading programs and data, a computer for
executing the programs, and a printer for
outputting the results. These systems do not use an
operating system. To run a program, the user
follows these steps:

➢ Code the source program on punched cards
(written in Fortran or assembly language).

➢ Load the card reading program.

➢ Compile the source program.

➢ Insert the data cards into the card reader.

➢ Execute the compiled program.

➢ Retrieve the results from the printer.

9

Systems with Job Monitor

In these systems, an operator simply loads the job cards into the
card reader and retrieves the results from the printer.
The job control monitor (a special program) is responsible for
reading, loading, compiling, and executing the programs, thereby
saving time.

The job control monitor is the predecessor of modern operating
systems. It resides in memory and manages card reading as well as
program execution.

To control the execution of programs, special control cards are
used, which are interpreted by the job control monitor.

10

Batch processing systems

In these systems, specialized intermediate machines
handle input/output operations. These machines
read the job cards and store them on a magnetic
tape. Then, the job control monitor executes these
jobs one by one and saves the results on another
magnetic tape. A third machine then prints the
results on paper.

Since the magnetic tape reader is faster than the
card reader, data reading and result writing are
accelerated. Additionally, card reading, result
printing, and job execution can occur
simultaneously, improving overall performance.

11

Batch Operating Systems

• Definition: Jobs are executed in batches without user interaction.

• Example: Early mainframe systems.

• Pros: Efficient for large-scale tasks.

• Cons: No user interaction, long wait times.

12

Time-Sharing Operating Systems

• Definition: Multiple users share system
resources simultaneously.

• Example: UNIX.

• Pros: Efficient resource utilization,
interactive.

• Cons: Complex scheduling, potential for
performance issues.

13

Real-Time Operating Systems

• Definition: OS designed for
real-time applications (e.g.,
robotics, embedded systems).

• Example: VxWorks, FreeRTOS.

• Pros: Predictable and fast
response times.

• Cons: Limited functionality,
specialized use cases.

14

Distributed Operating Systems

• Definition: Manages a group of independent computers as a single
system.

• Example: Google’s distributed systems.

• Pros: Scalability, fault tolerance.

• Cons: Complexity, network

dependency.

15

Mobile Operating Systems

• Definition: OS designed for mobile devices (e.g., smartphones,
tablets).

• Example: Android, iOS.

• Pros: Portability, touch-friendly interfaces.

• Cons: Limited hardware resources, security challenges.

16

Multiprogramming systems

17

Parallel systems

18

Personal computer systems

19

Embedded systems

20

OS Structures

• Monolithic kernel

• Microkernel

• Layered architecture

• Modular architecture

21

Monolithic Kernel
• Definition: All OS services run in

kernel space.
• Example: Linux.
• Pros: High performance.
• Cons: Less modular, harder to

maintain.

22

Microkernel
• Definition: Minimal kernel with most

services running in user space.
• Example: macOS (based on Mach

kernel).
• Pros: Modular, easier to maintain.
• Cons: Performance overhead.

Layered Architecture

• Definition: OS is divided into layers, each with specific functionality.
• Pros: Easy to debug and maintain.
• Cons: Performance overhead due to layer interactions.

23

Modular Architecture

• Definition: OS is built as a set of modules
that can be loaded dynamically.

• Example: Modern Linux kernels.
• Pros: Flexible, easy to extend.
• Cons: Complexity in module

management.

24

System Calls

• Definition: Interface between user programs and the OS.
• Examples: File operations (open, read, write), process control (fork,

exec).
• How they work: User program → System call → Kernel → Hardware.

25

Interrupts

• Definition: Signals from hardware or software to gain the OS’s
attention.

• Types: Hardware interrupts (e.g., keyboard input), software interrupts
(e.g., system calls).

• How they work: Interrupt → Interrupt handler → OS response.

26

System Calls and Interrupts Together

• How system calls and interrupts work together to manage resources.
• Example: A user program requests a file read (system call), and the

disk sends an interrupt when the data is ready.

27

Ms-DOS

28

WINDOWS

Linux MacOS

Summary

• OS manages hardware and software resources.
• Types: Batch, time-sharing, real-time, distributed, mobile.
• Structures: Monolithic, microkernel, layered, modular.
• System calls and interrupts enable OS functionality.

29

	Slide 1: Centre Universitaire de Mila 2nd year of Computer Science degree (LMD)
	Slide 2: Program
	Slide 3: Chapitre 1 Introduction to Operating Systems
	Slide 4: What is an Operating System?
	Slide 5: Why are Operating Systems Important?
	Slide 6: History of Operating Systems
	Slide 7: Types of Operating Systems
	Slide 8: Eevolution of Computer Systems
	Slide 9: Single user mode systems
	Slide 10: Systems with Job Monitor
	Slide 11: Batch processing systems
	Slide 12: Batch Operating Systems
	Slide 13: Time-Sharing Operating Systems
	Slide 14: Real-Time Operating Systems
	Slide 15: Distributed Operating Systems
	Slide 16: Mobile Operating Systems
	Slide 17: Multiprogramming systems
	Slide 18: Parallel systems
	Slide 19: Personal computer systems
	Slide 20: Embedded systems
	Slide 21: OS Structures
	Slide 22: Monolithic Kernel
	Slide 23: Layered Architecture
	Slide 24: Modular Architecture
	Slide 25: System Calls
	Slide 26: Interrupts
	Slide 27: System Calls and Interrupts Together
	Slide 28
	Slide 29: Summary

