Chapter		

Univariate Descriptive Statistics

Contents

1	Univ	variate	Descriptive Statistics	1
	1.1	Statist	ical Vocabulary	3
	1.2	Data I	Description	6
		1.2.1	Tables	6
		1.2.2	Graphs	6
	1.3	Positio	on Parameters	7
		1.3.1	Mean	7
		1.3.2	Mode	8
		1.3.3	Median	9
		1.3.4	Quartiles	11
		1.3.5	Dispersion Parameters	11
		1.3.6	Range	11
		1.3.7	Variance	12
		1.3.8	Standard Deviation	12
		1.3.9	Coefficient of Variation	12
		1.3.10	Shape Parameters	12

Descriptive statistics is the set of scientific methods for collecting, describing, and analyzing observed data.

1.1 Statistical Vocabulary

- **Population:** The set of individuals or objects of the same nature on which the study is conducted.
- Individuals: Individuals or statistical units are the elements of the population.
- **Sample:** A subset of the population.
- **Statistical Variable:** A characteristic is the property we intend to observe in the population or sample. A characteristic that is the subject of a study is also called a statistical variable *X*.
- **Statistical Modality:** A modality (or category) refers to the different possible situations (levels) of a statistical variable.

Two types of statistical variables are distinguished:

- **Quantitative Variables:** These are variables that can be measured and are characterized by numerical values. Variables whose modalities are numbers.
- A quantitative statistical variable can be:
 - Continuous: When it can take values from a real-number interval (measurement results).
 - Discrete: When it takes isolated values.
 - Temporal: These are particular quantitative variables that use units of time measurement. There are two types: date (e.g., birth date: 26/04/1994) and time (e.g., study hours: 6h).

Examples 1.1.1.

Variable	Possible Modalities	Type of Variable	
Height	1.70 <i>m</i> , 1.60 <i>m</i> , 1.65 <i>m</i> , 1.75 <i>m</i>	Quantitative, Continuous	
Number of Students	30, 50, 60, 80	Quantitative, Discrete	

- **Qualitative Variables:** These are variables that cannot be measured (they do not have numerical values). Variables whose modalities are words.
- Qualitative statistical variables can be:
 - Ordinal: These are variables whose modalities can be ordered by their meaning.
 - Nominal: These are variables whose modalities cannot be ordered by their meaning.

Example 1.1.1.

Variable	Possible Modalities	Type of Variable	
Eye Color	Black, Blue, Green, Brown	Qualitative, Nominal	
Satisfaction with Life	Very Satisfied, Satisfied, Unsatisfied	Qualitative, Ordinal	

- 1. **Statistical Series**: The simplest form of presenting statistical data related to a single characteristic or variable is a simple enumeration of the values taken by the characteristic.
- 2. Total Effectif: The total number of individuals in the population, denoted as *n*.
- 3. **Effectif**: The effective or absolute frequency, denoted as n_i , is the number of elements corresponding to a given modality.
- Cumulative Increasing Effectif: The cumulative effective , denoted as n^c_i ↑, is the number of individuals corresponding to the same characteristic (modality) and the previous characteristics.
- 5. **Cumulative Decreasing Effectif**: The cumulative frequency, denoted as $n_i^c \downarrow$, is the number of individuals corresponding to the same characteristic (modality) and the following characteristics.
- 6. **frequency** : denoted as f_i , is the ratio between the absolute frequency of a value and the total number of observations:

$$f_i = \frac{n_i}{n}$$

7. **Cumulative Increasing Frequency**: denoted as $f_i^c \uparrow$, is the ratio between the cumulative increasing absolute frequency of a value and the total number of observations:

$$f_i^c \uparrow = \frac{n_i^c \uparrow}{n}$$

8. Cumulative Decreasing Frequency denoted as $f_i^c \downarrow$, is the ratio between the cumulative decreasing absolute frequency of a value and the total number of observations:

$$f_i^c \downarrow = \frac{n_i^c \downarrow}{n}$$

Grade	n _i	$n_i^c \uparrow$	$n_i^c\downarrow$	f_i	$f_i^c \uparrow$	$f_i^c \downarrow$	
5	2	2	9	$\frac{2}{9}$	$\frac{2}{9}$	1	
6	1	3	7	$\frac{1}{9}$	$\frac{1}{3}$	<u>7</u> 9	
8	3	6	6	$\frac{1}{3}$	$\frac{2}{3}$	<u>6</u> 9	
12	2	8	3	$\frac{2}{9}$	<u>8</u> 9	<u>3</u> 9	
16	1	9	1	$\frac{1}{9}$	1	$\frac{1}{9}$	
Total	<i>n</i> = 9			$\sum_{i=1}^{5} f_i = 1$			

Example 1.1.2. Grades of 9 students in a group

14. **Class (Interval)**: A class is a grouping of values of a variable into intervals that may be equal or unequal. It is typically used when the variable studied is a continuous quantitative variable.

For each class, the following can be defined:

- A lower limit
- An upper limit
- Class interval (range) = upper limit lower limit
- Class center $c_i = \frac{\text{upper limit+lower limit}}{2}$

Example 1.1.3. Blood glucose levels (in g/l) of 14 subjects

Class	C _i	n _i	$n_i^c \uparrow$	$n_i^c \downarrow$	f_i	$f_i^c \uparrow$	$f_i^c\downarrow$
[0.85; 0.91[0.88	3	3	14	$\frac{3}{14}$	$\frac{3}{14}$	1
[0.91; 0.97[0.94	5	8	11	$\frac{5}{14}$	$\frac{4}{7}$	$\frac{11}{14}$
[0.97; 1.03[1.00	3	11	6	$\frac{3}{14}$	$\frac{11}{14}$	$\frac{6}{14}$
[1.03; 1.09[1.06	2	13	3	$\frac{2}{14}$	$\frac{13}{14}$	$\frac{3}{14}$
[1.09; 1.15[1.12	1	14	1	$\frac{1}{14}$	1	$\frac{1}{14}$
Total		<i>n</i> = 14			$\sum_{i=1}^{5} f_i = 1$		

1.2 Data Description

According to the type of variable being studied, there are two main ways to present and describe a series of statistical data: tables and graphical representations.

1.2.1 Tables

A table can be used regardless of the nature of the data, and it serves to present data in a precise and complete way.

1.2.2 Graphs

The objective of graphs is to provide a systematic view of the phenomenon being studied by illustrating a general trend and giving an overall image of the results.

Histogram: Histograms are surfaces used to represent continuous quantitative variables. The area of each surface is equal to the frequency corresponding to a class.

Bar Chart: A bar chart is a graphical representation of statistical data using segments.

Examples 1.2.1.

Diameter	12	13	14	15	16	17	18
Frequency	2	5	3	4	6	5	3

Bar Diagram: A bar diagram is a graphical representation primarily used for the distribution of a qualitative variable using rectangles of equal width.

Examples 1.2.2.

Marital Status	Single	Divorced	Married	Widowed
Frequency	9	2	7	2

Pie Chart: A pie chart displays sections on a disk corresponding to the modalities of the characteristic, where the angles are proportional to the percentages.

$$\alpha_i = \frac{360^\circ \times f_i}{n}$$

Examples 1.2.3.

Language	Number of Students	f_i	α_i
English	500	0.5	180°
French	200	0.2	72°
German	150	0.15	54°
Italian	100	0.1	36°
Other	50	0.05	18°

1.3 Position Parameters

Position parameters: values located at the center of the statistical distribution, which include the mean, mode, median and Quartiles.

1.3.1 Mean

For a discrete statistical variable:

Let *X* be a discrete statistical variable, and let $x_1, x_2, ..., x_k$ be its values with corresponding frequencies $n_1, n_2, ..., n_k$, where $n = \sum_{i=1}^k n_i$ is the total frequency.

The mean of *X* is given by:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \sum_{i=1}^{k} f_i x_i.$$

Examples 1.3.1.

x_i	0	1	2	3	4
n _i	2	3	1	1	1

The mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{5} n_i x_i = \frac{1}{8} (0 \times 2 + 1 \times 3 + 2 \times 1 + 3 \times 1 + 4 \times 1) = \frac{12}{8} = 1.5.$$

For a continuous statistical variable:

If the observations are grouped into classes, the mean is given by:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} n_i c_i = \sum_{i=1}^{k} f_i c_i,$$

where c_i is the class midpoint.

Examples 1.3.2.

Class:	C _i	n _i
[1.2, 1.3[1.5	3
[2.0, 2.3[2.5	1
[3.3, 3.4[3.5	2

The mean is calculated as:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{3} n_i c_i = \frac{1}{6} (3 \times 1.5 + 1 \times 2.5 + 2 \times 3.5) = \frac{14}{6} = 2.33.$$

1.3.2 Mode

For a discrete statistical variable:

The mode Mo is the value x_i with the highest frequency.

Examples 1.3.3.

x_i	2	3	5	6	7	8	9	10
n _i	2	1	1	2	2	1	1	1

There are three modes: Mo = 2, 6, 7.

For a continuous statistical variable:

The mode is calculated using the formula:

$$Mo = L_i + \frac{d_1}{d_1 + d_2} \times a$$

where:

• *L_i* is the lower boundary of the modal class (the class with the highest frequency),

- $d_1 = n_i n_{i-1}$,
- $d_2 = n_i n_{i+1}$,
- *a* is the amplitude of the modal class.

Example 1.3.1.

C_i	n _i
[1.60, 1.65]	3
[1.65, 1.70	8
[1.70, 1.75]	2

The modal class is [1.65, 1.70[*, so:*

$$L_i = 1.65, \quad d_1 = 8 - 3 = 5, \quad d_2 = 8 - 2 = 6, \quad a = 1.70 - 1.65 = 0.05$$

Thus,

$$Mo = 1.65 + \frac{5}{5+6} \times 0.05 = 1.67.$$

1.3.3 Median

For a discrete statistical variable:

The median *Me* is the value that lies in the center of an ordered list of numbers.

- If *n* is even, then:

$$Me = \frac{x_{n/2} + x_{n/2+1}}{2}$$

- If *n* is odd, then:

$$Me = x_{(n+1)/2}$$

Example 1.12:

The number of children in 6 families:

Ordered values:

Since n = 6 is even,

$$Me = \frac{x_3 + x_4}{2} = \frac{2+3}{2} = 2.5.$$

Example 1.3.2. The number of children in 7 families:

Ordered values:

Since n = 7 is odd,

 $Me = x_4 = 1.$

For a continuous statistical variable:

The median is given by:

$$Me = L_i + \frac{n/2 - \sum_{i=1}^{Me} n_i}{n_{Me}} \times a$$

where:

- *L_i* is the lower boundary of the median class,
- $\sum_{i=1}^{Me} n_i$ is the cumulative frequency of all classes before the median class,
- *n_{Me}* is the frequency of the median class,
- *a* is the amplitude of the median class.

Example 1.3.3. *From* (1.1.3), *we get:*

- The median class is [0.91, 0.97[,
- $L_i = 0.91$,
- *n* = 14,
- $\sum_{i=1}^{Me} n_i = 3$,
- $n_{Me} = 5$,
- a = 0.97 0.91 = 0.06.

Thus,

$$Me = 0.91 + \frac{7-3}{5} \times 0.06 = 0.958.$$

1.3.4 Quartiles

For a discrete statistical variable:

The quartiles are the three values that divide the distribution into four equal parts. They are:

- The first quartile Q_1 represents 25% of the sample, i.e., Q_1 is the value at the position of the smallest integer greater than or equal to n/4,
- The second quartile Q_2 represents 50% of the sample,
- The third quartile Q_3 represents 75% of the sample, i.e., Q_3 is the value at the position of the smallest integer greater than or equal to 3n/4.

The interquartile range (IQR) is the difference between the third and first quartiles:

$$IQR = Q_3 - Q_1$$

Example 1.3.4. *Given the observations:*

Thus, $Q_1 = 3$ *and* $Q_3 = 7$ *.*

1.3.5 Dispersion Parameters

Dispersion parameters summarize the spread of values around the central value.

1.3.6 Range

The range *e* is the difference between the largest and smallest observed values:

$$e = x_{\max} - x_{\min}$$

Example 1.16:

The grades of 10 students:

Thus,

$$e = x_{\max} - x_{\min} = 20 - 2 = 18.$$

1.3.7 Variance

The variance V(X) is the arithmetic mean of the squared deviations between each value and the mean:

$$V(X) = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^{k} n_i x_i^2 - \bar{x}^2$$

1.3.8 Standard Deviation

The standard deviation σ_X is the square root of the variance:

$$\sigma_X = \sqrt{V(X)}$$

1.3.9 Coefficient of Variation

The coefficient of variation *CV* is defined as:

$$CV = \frac{\sigma_X}{\overline{x}}$$

Example 1.3.5. *For the data:*

$$\overline{x}_{i} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$n_{i} \quad 2 \quad 3 \quad 1 \quad 1 \quad 1$$

$$\overline{x} = 1.5, \quad V(X) = 1.75, \quad \sigma_{X} = 1.3, \quad CV = \frac{1.3}{1.5} = 0.87$$

1.3.10 Shape Parameters

Skewness

There are several coefficients of skewness, the main ones are:

• Pearson's skewness coefficient:

$$AP = \frac{\overline{x} - Mo}{\sigma_X}$$

• Yule's skewness coefficient:

$$AY = \frac{Q_1 + Q_3 - 2Q_2}{Q_3 - Q_1}.$$

- **Remark 1.3.1.** *A positive coefficient indicates a distribution that is more spread out to the right.*
 - A negative coefficient indicates a distribution that is more spread out to the left.
 - *A zero coefficient indicates a symmetric distribution.*

Kurtosis

Kurtosis is measured by:

• Pearson's kurtosis coefficient:

$$APP = \frac{m_4}{\sigma_X^4}$$

where m_4 is the fourth central moment.

• Fisher's kurtosis coefficient:

$$APF = \frac{m_4}{\sigma_X^4} - 3$$

Remark 1.3.2. • If APF = 0, the distribution is said to be "normal" or "mesokurtic".

- *If APF < 0, the distribution is said to be flatter than normal or "platykurtic".*
- *If APF > 0, the distribution is said to be more peaked than normal or "leptokurtic".*