Chapitre 1

Vector spaces

In this course, the field $(\mathbb{K}, +, \times)$ denotes \mathbb{R}, \mathbb{C} or any commutative field.

1.1 Definition

Definition 1.1.

Let (E, +) be an abelian group and \mathbb{K} a field. We say that E is a vector space over \mathbb{K} or a \mathbb{K} -vector space if there exists a map :

$$\mathbb{K} \times E \longrightarrow E$$
$$(\lambda, x) \longmapsto \lambda \bullet x$$

called the external multiplication law, and it must satisfy the following properties :

- 1. $\forall x, y \in E, \forall \lambda \in \mathbb{K}, \lambda \bullet (x+y) = \lambda \bullet x + \lambda \bullet y,$
- 2. $\forall x \in E, \forall \lambda, \mu \in \mathbb{K}, (\lambda + \mu) \bullet x = \lambda \bullet x + \mu \bullet x,$
- 3. $\forall x \in E, \forall \lambda, \mu \in \mathbb{K}, (\lambda \times \mu) \bullet x = \lambda \bullet (\mu \bullet x),$
- 4. $\forall x \in E, 1_{\mathbb{K}} \bullet x = x.$

The elements of E are called vectors and those of \mathbb{K} are called scalars. The neutral element of the group (E, +) is denoted 0_E or 0 and is called the zero vector of E.

Rules of Calculation :

- 1. $\beta \bullet x = 0_E \Leftrightarrow \beta = 0_{\mathbb{K}} \text{ or } x = 0_E.$
- 2. $\forall x \in E; \forall \beta \in K : -(\beta \cdot x) = (-\beta) \cdot x = \beta \cdot (-x).$

- 3. $\forall x \in E \setminus \{0\}, \forall \beta, \gamma \in K, \ \beta \cdot x = \gamma \cdot x \Rightarrow \beta = \gamma.$ 4. $\forall x \in E, \forall \beta_1, \dots, \beta_n \in K: \quad \sum_{k=1}^n (\beta_k \cdot x) = (\sum_{k=1}^n \beta_k) \cdot x.$
- 5. $\forall x_1, \dots, x_n \in E, \forall \beta \in K : \sum_{k=1}^n \beta \cdot x_k = \beta \cdot (\sum_{k=1}^n x_k).$

Example 1.1. Examples of Vector Spaces :

1. The Vector Space \mathbb{R}^n :

- (a) Description : The space \mathbb{R}^n consists of vectors with n real components.
- (b) Example : The space \mathbb{R}^3 consists of vectors with three real components, such as :

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \quad v_1, v_2, v_3 \in \mathbb{R}$$

- (c) Operations :
 - *i.* Vector Addition :

$$\mathbf{v} + \mathbf{w} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}$$

ii. Scalar Multiplication :

$$\alpha \cdot \mathbf{v} = \alpha \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} \alpha v_1 \\ \alpha v_2 \\ \alpha v_3 \end{pmatrix}$$

2. The Vector Space \mathbb{C}^n :

- (a) Description : The space \mathbb{C}^n consists of vectors with n complex components.
- (b) Example : The space \mathbb{C}^2 consists of vectors with two complex components, such as :

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \quad v_1, v_2 \in \mathbb{C}$$

- (c) Operations :
 - $i. \ Vector \ Addition:$

$$\mathbf{v} + \mathbf{w} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \end{pmatrix}$$

,

ii. Scalar Multiplication :

$$\alpha \cdot \mathbf{v} = \alpha \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \alpha v_1 \\ \alpha v_2 \end{pmatrix}$$

3. The Vector Space of Continuous Functions C([a,b]):

- (a) Description : The space C([a, b]) consists of all continuous functions defined on the interval [a, b].
- (b) Example : If f(x) and g(x) are continuous functions on [a, b], then any linear combination $h(x) = \alpha f(x) + \beta g(x)$ where $\alpha, \beta \in \mathbb{R}$ will also be a continuous function on [a, b].
- (c) Operations :
 - *i.* Function Addition : If f(x) and g(x) are continuous functions, then their sum h(x) = f(x) + g(x) is also continuous.
 - ii. Scalar Multiplication : If f(x) is a continuous function and $\alpha \in \mathbb{R}$, then the product $\alpha \cdot f(x)$ is continuous.
- 4. The Vector Space of Polynomials $\mathbb{R}[x]$:
 - (a) Description : The space $\mathbb{R}[x]$ consists of all polynomials with real coefficients.
 - (b) Operations :
 - i. Polynomial Addition : If $f(x) = 3x^2 + 2x + 1$ and $g(x) = x^3 x$, their sum is :

$$f(x) + g(x) = 3x^{2} + 2x + 1 + x^{3} - x = x^{3} + 3x^{2} + x + 1$$

ii. Scalar Multiplication : If f(x) is a polynomial and $\alpha \in \mathbb{R}$, then :

$$\alpha \cdot f(x) = \alpha(3x^2 + 2x + 1) = 3\alpha x^2 + 2\alpha x + \alpha$$

Definition 1.2. Linear Combinations

Let *E* be a \mathbb{R} -vector space, and let $\{x_1, x_2, \ldots, x_n\}$ be a family of *n* vectors in *E*. A *linear combination* of the family $\{x_1, x_2, \ldots, x_n\}$ is any vector of the form :

$$\sum_{i=1}^{n} \lambda_i x_i$$

where $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n$ are scalars in the field \mathbb{R} .

Example 1.2. Example : Linear Combination

Consider the vector space \mathbb{R}^2 , which is the space of all 2-dimensional real vectors. Let the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

be two vectors in \mathbb{R}^2 .

A linear combination of these two vectors is any vector of the form :

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 = \lambda_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

where λ_1 and λ_2 are scalars in \mathbb{R} .

Let's choose $\lambda_1 = 2$ and $\lambda_2 = -1$. The linear combination becomes :

$$2\binom{1}{2} + (-1)\binom{3}{4} = \binom{2}{4} + \binom{-3}{-4} = \binom{-1}{0}$$

Thus, the linear combination of \mathbf{v}_1 and \mathbf{v}_2 with scalars 2 and -1 results in the vector $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

1.2 Subspaces of Vector Spaces

1.2.1 Definition

Definition 1.3.

Let E be a vector space over \mathbb{K} , and let F be a subset of E. For F to be a subspace of E, the following conditions must be satisfied :

- 1. F is a subgroup of E.
- 2. $\forall x \in F, \forall \lambda \in \mathbb{K}, \lambda x \in F$.

or equivalently :

- 1. $F \neq \emptyset$.
- 2. $\forall x, y \in F, x y \in F$.

3. $\forall x \in F, \forall \lambda \in \mathbb{K}, \lambda x \in F.$

or equivalently :

- 1. $F \neq \emptyset$.
- 2. $\forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}; \lambda x + \mu y \in F.$
- **Example 1.3.** 1. $\{0\}$ is a vector subspace of the vector space E. It is the smallest subspace of E.
 - 2. E itself is a vector subspace of E. It is the largest subspace of E.

3.

$$F := \{ (x, y, z) \in \mathbb{R}^3 \mid 2x + y - z = 0 \}.$$

is a subspace of \mathbb{R}^3 .

- 4. $F_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x y + 3z = 1\}$ is not subspace of \mathbb{R}^3 .
- 5. Let $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X] \mid \deg(P) \leq n\}$ be the set of polynomials in $\mathbb{K}[X]$ with degree at most n. This set is a vector subspace of $\mathbb{K}[X]$.

Proposition 1.4. Let F be a subspace of a K-vector space E, and let $\{f_i\}_{i \in I} \subset F$. Then, any linear combination of the $\{f_i\}_{i \in I}$ belongs to F.

1.2.2 Operations on vector subspaces

Recall that if F and G are sets, their intersection is the set of elements in F that are also in G. Also, the union of F and G is the set of elements that belong to either F or G (or both).

The union of two vector subspaces is not always a vector subspace.

Example 1.4. Let $E_1 = \{(x,0) \mid x \in \mathbb{R}\}$ and $E_2 = \{(0,y) \mid y \in \mathbb{R}\}$, which are two subspaces of \mathbb{R}^2 . The union $E_1 \cup E_2$ is not a vector space.

Reasoning :

The sets E_1 and E_2 are both subspaces of \mathbb{R}^2 , but their union is not closed under vector addition. Consider the elements $(1,0) \in E_1$ and $(0,1) \in E_2$. The sum of these two vectors is :

$$(1,0) + (0,1) = (1,1).$$

However, $(1,1) \notin E_1 \cup E_2$, since neither (1,1) is in E_1 nor in E_2 . Therefore, $E_1 \cup E_2$ is not closed under addition, and hence it is not a subspace of \mathbb{R}^2 .

Theorem 1.5. Let E_1 and E_2 be two vector subspaces of E. Then, $E_1 \cup E_2$ is a vector subspace if and only if $E_1 \subset E_2$ or $E_2 \subset E_1$.

Démonstration. We will show that if $E_1 \cup E_2$ is a subspace, then $E_1 \subset E_2$ or $E_2 \subset E_1$. To do this, we prove the contrapositive : if $E_1 \not\subset E_2$ and $E_2 \not\subset E_1$, then $E_1 \cup E_2$ is not a subspace. Since $E_1 \not\subset E_2$ and $E_2 \not\subset E_1$, there exist elements $x \in E_1$ such that $x \notin E_2$, and $y \in E_2$ such that $y \notin E_1$. Then, $x + y \notin E_1 \cup E_2$. (Suppose that $x + y \in E_1$, since $x \in E_1$, we would have $x + y - x \in E_1$, which contradicts the assumption that $y \notin E_1$). Thus, $x + y \notin E_1 \cup E_2$, and since addition is not closed in $E_1 \cup E_2$, it follows that $E_1 \cup E_2$ is not a subspace. \Box

Proposition 1.6. The arbitrary intersection of vector subspaces is a vector subspace.

Definition 1.7. (Sum)

Let E be a K-vector space, and let F and G be two vector subspaces of E. The sum of F and G, denoted F + G, is the set

$$F + G = \{u + v \mid u \in F \text{ and } v \in G\}.$$

Proposition 1.8. Let E_1 and E_2 be two vector subspaces of E, the set

$$E_1 + E_2 = \{x_1 + x_2 \mid x_1 \in E_1, x_2 \in E_2\}$$

has the following properties :

- 1. $E_1 + E_2$ is a vector subspace of E.
- 2. $E_1 \cup E_2 \subseteq E_1 + E_2$.
- 3. $E_1 + E_2$ is the smallest vector subspace of E that contains $E_1 \cup E_2$.

Remark 1.9.

Let F, G, and H be three vector subspaces of E. We have the following :

- 1. F + G = G + F; F + (G + H) = (F + G) + H; $F + \{0\} = F$; F + E = F; F + F = F.
- 2. If H = F + G, the expression F = H G does not make sense.
- 3. If F + G = F + H, we cannot immediately conclude that G = H.

Definition 1.10. Let E_1 and E_2 be two vector subspaces of E. We say that E_1 and E_2 are in direct sum in E (or that E_1 is complementary to E_2 in E) if one of the following equivalent assertions is satisfied :

1.

$$E_1 \cap E_2 = \{0_E\} and \quad E_1 + E_2 = E.$$

2. For every $w \in E$, there exists a unique pair of vectors $(u, v) \in E_1 \times E_2$ such that w = u + v.

Example 1.5. The vector subspaces of \mathbb{R}^3 :

$$F = \{(a, a, a) \in \mathbb{R}^3 \mid a \in \mathbb{R}\} \text{ and } G = \{(x, y, z) \in \mathbb{R}^3 \mid x = y - 2z\}$$

are in direct sum, since if $(a, a, a) \in G$, then a = a - 2a, hence a = 0, and therefore $F \cap G = \{(0, 0, 0)\}.$

Example 1.6. Let $F_2 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y = 0\}$ and $F_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x - 4y - z = 0\}$. Are the subspaces F_2 and F_3 complementary in \mathbb{R}^3 ?

Proposition 1.11. (Existence of Complementary Vector Subspaces) Let E be a vector space over the field K. Every vector subspace of E has at least one complementary vector subspace.

1.2.3 Generated subspace

Theorem 1.12. Let v_1, \ldots, v_n be a finite set of vectors in a vector space E over a field \mathbb{K} . Then :

- The set of linear combinations of the vectors v_1, \ldots, v_n is a subspace of E.
- It is the smallest subspace of E (in the sense of inclusion) containing the vectors v_1, \ldots, v_n .

Notation. This subspace is called the subspace generated by v_1, \ldots, v_n , and is denoted $\text{Span}(v_1, \ldots, v_n)$. Therefore, we have :

 $u \in \text{Span}(v_1, \dots, v_n) \iff \exists \lambda_1, \dots, \lambda_n \in K \text{ such that } u = \lambda_1 v_1 + \dots + \lambda_n v_n$

Remark 1.13. 1. Saying that $\operatorname{Span}(v_1, \ldots, v_n)$ is the smallest subspace of E containing the vectors v_1, \ldots, v_n means that if F is a subspace of E containing the vectors v_1, \ldots, v_n , then $\operatorname{Span}(v_1, \ldots, v_n) \subseteq F$.

2. More generally, we can define the subspace spanned by any subset V (not necessarily finite) of a vector space : Span(V) is the smallest subspace containing V.

Example 1.7.

1. The vector subspace of \mathbb{R}^3 generated by the set $A = \{(-2, 0, 1), (3, 1, 1)\}$ is

$$Span(A) = \{a(-2,0,1) + b(3,1,1) \mid a, b \in \mathbb{R}\} = \{(-2a + 3b, b, a + b) \mid a, b \in \mathbb{R}\}.$$

2. In $\mathbb{C}^{2}[X]$, let the vectors $u = iX - X^{2}$ and v = 1 + i + X. Then

 $Span(u,v) = \{\alpha(iX - X^2) + \beta(1 + i + X) \mid \alpha, \beta \in \mathbb{C}\} = \{\beta(1 + i) + (\alpha i + \beta)X - \beta X^2 \mid \alpha, \beta \in \mathbb{C}\}.$

Theorem 1.14. 1. Si un vecteur w est combinaison linéaire des vecteurs (v_1, \ldots, v_n) , alors

$$Span(v_1,\ldots,v_n,w) = Span(v_1,\ldots,v_n)$$

2. Si un vecteur w est combinaison linéaire des vecteurs $(v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n)$, alors

$$Span(v_1,\ldots,v_{k-1},v_k+w,v_{k+1},\ldots,v_n) = Span(v_1,\ldots,v_n)$$

Example 1.8. Let $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)$ in \mathbb{R}^3 , and suppose that $w = v_1 + v_2 = (1, 1, 0)$.

1. First part of the theorem : Since $w = v_1 + v_2$, w is a linear combination of v_1 and v_2 . Therefore,

$$Span(v_1, v_2, v_3, w) = Span(v_1, v_2, v_3)$$

This means that adding w to the set (v_1, v_2, v_3) does not change the space spanned by v_1, v_2, v_3 .

2. Second part of the theorem : Now suppose we replace v_1 by $v_1 + w$. We have :

$$v_1 + w = (1, 0, 0) + (1, 1, 0) = (2, 1, 0)$$

And $w = v_1 + v_2$, which is already a linear combination of the vectors v_1 and v_2 . Therefore,

$$Span(v_1 + w, v_2, v_3) = Span(v_1, v_2, v_3)$$

Thus, replacing v_1 by $v_1 + w$ does not affect the space spanned by v_1, v_2, v_3 .

Theorem 1.15.

Let A and B be two subsets of a \mathbb{K} -vector space E. Then :

- 1. $A \subseteq B$ implies $Span(A) \subseteq Span(B)$
- 2. $Span(A \cup B) = Span(A) + Span(B)$

1.2.4 Generating, free and dependent families

Definition 1.16. (Generating familie)

Let E be a K-vector space and $X = \{x_i \mid i \in I\}$ a subset of E. We say that the subset X is generating E or generates E if every element of E is a linear combination of elements of X, i.e., E = Span(X).

Example 1.9. *1. Consider the set* $S = \{e_1, e_2, e_3\}$ *, where :*

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

This set S is called a **generating set** for the vector space \mathbb{R}^3 because every vector in \mathbb{R}^3 can be written as a linear combination of the vectors in S.

Specifically, any vector
$$\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
 can be written as :
 $\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$

Thus, the set $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ spans \mathbb{R}^3 , meaning it generates the entire vector space \mathbb{R}^3 .

- 2. In \mathbb{C} viewed as an \mathbb{R} -vector space, the family $\{1, i\}$ is generating.
- 3. Consider the vector space of polynomials of degree at most 4, denoted by $\mathbb{R}_2[X]$, which consists of all polynomials of the form :

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

A generating set for this space is the set :

$$\{1, x, x^2, x^3, x^4\}$$

This set is called a **basis** for P_4 , because every polynomial of degree at most 4 can be expressed as a linear combination of these elements. For instance, the polynomial $p(x) = 2 + 3x - 4x^2 + x^3$ can be written as :

$$p(x) = 2 \cdot 1 + 3 \cdot x - 4 \cdot x^{2} + 1 \cdot x^{3} + 0 \cdot x^{4}$$

Thus, the set $\{1, x, x^2, x^3, x^4\}$ generates P_4 .

4. The family $\{X^k\}_{k\in\mathbb{N}}$ generates $\mathbb{R}[X]$, and for all $n\in\mathbb{N}$, the set $\{1, X, \ldots, X^n\}$ generates $\mathbb{R}_n[X]$.

Remark 1.17. The generating set of a K-vector space is not unique.

Definition 1.18. (Free familie)

Let *E* be a \mathbb{K} -vector space and let $\{v_1, \ldots, v_n\}$ be a family of vectors in *E*. We say that the family $\{v_1, \ldots, v_n\}$ is free or linearly independent in *E* if :

for all $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0_E \Rightarrow \lambda_1 = \cdots = \lambda_n = 0_K$.

Example 1.10. Let $E = \mathbb{R}^3$ be the 3-dimensional Euclidean space, and consider the set of vectors :

$$S = \left\{ \mathbf{v}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

This set $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is linearly independent in \mathbb{R}^3 .

Example 1.11. Consider the vector space $\mathbb{R}_3[X]$, which is the space of all polynomials of degree at most 3. A general element in P_3 is of the form :

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Now, consider the set of polynomials :

$$S = \{1, x, x^2\}$$

We will show that this set is **linearly independent** in P_3 . To verify this, suppose that a linear combination of the elements in S equals the zero polynomial :

$$c_1 \cdot 1 + c_2 \cdot x + c_3 \cdot x^2 = 0$$

This means that the polynomial :

$$c_1 + c_2 x + c_3 x^2 = 0$$

is the zero polynomial. For this to hold for all x, the coefficients of each power of x must be zero. Therefore, we have the system of equations :

$$c_1 = 0$$
$$c_2 = 0$$
$$c_3 = 0$$

Since the only solution to this system is $c_1 = c_2 = c_3 = 0$, the set $\{1, x, x^2\}$ is linearly independent in P_3 .

Definition 1.19. (dependent familie)

Let *E* be a K-vector space and let $\{v_1, \ldots, v_n\}$ be a family of vectors in *E*. We say that the family $\{v_1, \ldots, v_n\}$ is **dependent** if it is not free, which means there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ such that $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$ and $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0_E$.

Example 1.12. Consider the following two vectors :

$$\mathbf{v}_1 = \begin{pmatrix} 1\\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2\\ 4 \end{pmatrix}$$

These vectors are linearly dependent because $\mathbf{v}_2 - 2 \cdot \mathbf{v}_1 = 0$.

Theorem 1.20.

Let $n \geq 2$. The family $\{v_1, v_2, \ldots, v_n\}$ is linearly dependent if and only if one of the vectors v_1, v_2, \ldots, v_n is a linear combination of the others.

1.2.5 Base

Definition 1.21.

We say that the family $\{x_i\}_{i \in I}$ is a basis of E if $\{x_i\}_{i \in I}$ is a linearly independent and generating family of E.

Example 1.13.

- 1. $\{1, i\}$ is a basis of the \mathbb{R} -vector space \mathbb{C} .
- 2. An example of a basis for \mathbb{R}^2 is the set of standard unit vectors :

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

3. An example of a basis for the space of polynomials of degree at most 3, denoted $\mathbb{R}_3[X]$, is the set :

$$\{1, x, x^2, x^3\}$$

Remark 1.22.

- 1. The empty set is a basis for the zero vector space.
- 2. There is no uniqueness of the basis for a given vector space.

Theorem 1.23.

Let $B = \{e_1, e_2, \dots, e_n\}$ be a basis of a \mathbb{K} -vector space E. Any element v of E can be uniquely written as a linear combination of the e_i 's :

$$v = \sum_{i=1}^{n} \alpha_i e_i \quad where \quad \alpha_i \in \mathbb{K}.$$

The scalars α_i are called the coordinates of v with respect to the basis B.

Proposition 1.24. Properties :

- 1. $\{x\}$ is a linearly independent set if and only if $x \neq 0$.
- 2. Any family that contains a generating set is itself a generating set.
- 3. Any subfamily of a linearly independent family is linearly independent.
- 4. Any family that contains a dependent family is itself dependent.
- 5. Any family $\{v_1, v_2, \ldots, v_p\}$ where one of the vectors v_i is the zero vector is dependent.

Theorem 1.25. Basis of a Direct Sum of Two Subspaces

Let E be a K-vector space, and let F and G be two non-trivial subspaces of E (i.e., neither is reduced to $\{0\}$). If B_F is a basis of F and B_G is a basis of G, then $B_F \cup B_G$ is a generating set for F + G (the sum of the subspaces). Moreover, if F and G are in direct sum, then $B_F \cup B_G$ is a basis for $F \oplus G$ (the direct sum of the subspaces).

Example 1.14. Example :

Consider the following vector subspaces in \mathbb{R}^4 :

$$F = Span\{(1, -1, 0, 2)\} \quad and \quad G = Span\{(-2, 5, 3, 1), (1, 1, -2, -2)\}.$$

Since $(1, -1, 0, 2) \neq 0$ in \mathbb{R}^4 and the vectors (-2, 5, 3, 1) and (1, 1, -2, -2) are not collinear, it follows that $\{(1, -1, 0, 2)\}$ is a basis for F and $\{(-2, 5, 3, 1), (1, 1, -2, -2)\}$ is a basis for G. Therefore, the set $\{(1, -1, 0, 2), (-2, 5, 3, 1), (1, 1, -2, -2)\}$ is a generating set for F + G.

1.3 Finite-Dimensional Vector Space

Definition 1.26.

- 1. Let $\{x_i\}_{i \in I}$ be a family of elements of E. The *cardinality* of S is the number of elements in S.
- 2. E is a finite-dimensional vector space if E has a generating set with finite cardinality. Otherwise, E is an infinite-dimensional vector space.

Example 1.15. Examples :

- 1. The vector spaces \mathbb{R}^n for $n \in \mathbb{N}$ and $\mathbb{R}_n[X]$ for $n \in \mathbb{N}$ are finite-dimensional.
- 2. $\mathbb{R}[X]$ is infinite-dimensional vector space.

Theorem 1.27.

All bases of the same vector space E have the same cardinality. This common number is called the dimension of E. We denote it by dim E.

Theorem 1.28.

Every vector space E that is non-trivial (i.e., $E \neq \{0\}$) and finite-dimensional admits a basis.

Corollary 1.29.

In a vector space of dimension n, we have the following :

- 1. Every linearly independent set has at most n elements.
- 2. Every generating set has at least n elements.

Remark 1.30.

If dim E = n, to show that a set of n elements is a basis of E, it is sufficient to prove that it is either linearly independent or generating.

Theorem 1.31. Incomplete Basis Theorem :

Let E be a finite-dimensional vector space and L a linearly independent set in E. Then there exists a basis B of finite cardinality that contains L.

Theorem 1.32. Theorem 1.15 : Grassmann's Formula

Let E be a finite-dimensional vector space and F, G be two subspaces of E. Then,

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

In particular, F and G are in direct sum if and only if

 $\dim(F+G) = \dim(F) + \dim(G).$

Theorem 1.33. Theorem 1.16

If E is a finite-dimensional vector space and F is a subspace of E, then F is also finite-dimensional, and we have

$$\dim(F) \le \dim(E).$$

Furthermore,

 $\dim(F) = \dim(E)$ if and only if F = E.

Remark 1.34. Remark :

The dimension of the zero vector space is 0.

Example 1.16. Examples :

- 1. dim $(\mathbb{K}^n) = n$.
- 2. dim $(\mathbb{K}_n[X]) = n + 1$.
- 3. dim($\mathbb{K}[X]$) is infinite.
- 4. $\dim_{\mathbb{C}} \mathbb{C} = 1$ and $\dim_{\mathbb{R}} \mathbb{C} = 2$.

Theorem 1.35.

Let F and G be two subspaces of a finite-dimensional vector space E. Then F and G are supplementary in E if and only if at least two of the following three conditions are true :

- 1. $\dim F + \dim G = \dim E$,
- 2. $F \cap G = \{0\},\$
- 3. F + G = E.