
Chapitre 1

Vector spaces

In this course, the field (K,+,×) denotes R, C or any commutative field.

1.1 Definition

Definition 1.1.

Let (E,+) be an abelian group and K a field. We say that E is a vector space over
K or a K-vector space if there exists a map :

K× E −→ E

(λ, x) 7−→ λ • x

called the external multiplication law, and it must satisfy the following properties :

1. ∀x, y ∈ E,∀λ ∈ K, λ • (x+ y) = λ • x+ λ • y,

2. ∀x ∈ E,∀λ, µ ∈ K, (λ+ µ) • x = λ • x+ µ • x,

3. ∀x ∈ E,∀λ, µ ∈ K, (λ× µ) • x = λ • (µ • x),

4. ∀x ∈ E, 1K • x = x.

The elements of E are called vectors and those of K are called scalars. The neutral
element of the group (E,+) is denoted 0E or 0 and is called the zero vector of E.

Rules of Calculation :

1. β • x = 0E ⇔ β = 0K or x = 0E.

2. ∀x ∈ E; ∀β ∈ K : −(β · x) = (−β) · x = β · (−x).
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3. ∀x ∈ E \ {0}, ∀β, γ ∈ K, β · x = γ · x⇒ β = γ.

4. ∀x ∈ E, ∀β1, . . . , βn ∈ K :
∑n

k=1(βk · x) = (
∑n

k=1 βk) · x.

5. ∀x1, . . . , xn ∈ E, ∀β ∈ K :
∑n

k=1 β · xk = β · (
∑n

k=1 xk).

Example 1.1. Examples of Vector Spaces :

1. The Vector Space Rn :

(a) Description : The space Rn consists of vectors with n real components.

(b) Example : The space R3 consists of vectors with three real components,
such as :

v =


v1

v2

v3

 , v1, v2, v3 ∈ R

(c) Operations :

i. Vector Addition :

v + w =


v1 + w1

v2 + w2

v3 + w3


ii. Scalar Multiplication :

α · v = α


v1

v2

v3

 =


αv1

αv2

αv3


2. The Vector Space Cn :

(a) Description : The space Cn consists of vectors with n complex compo-
nents.

(b) Example : The space C2 consists of vectors with two complex compo-
nents, such as :

v =

(
v1

v2

)
, v1, v2 ∈ C

(c) Operations :

i. Vector Addition :

v + w =

(
v1 + w1

v2 + w2

)
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ii. Scalar Multiplication :

α · v = α

(
v1

v2

)
=

(
αv1

αv2

)

3. The Vector Space of Continuous Functions C([a, b]) :

(a) Description : The space C([a, b]) consists of all continuous functions
defined on the interval [a, b].

(b) Example : If f(x) and g(x) are continuous functions on [a, b], then any
linear combination h(x) = αf(x) + βg(x) where α, β ∈ R will also be a
continuous function on [a, b].

(c) Operations :

i. Function Addition : If f(x) and g(x) are continuous functions, then
their sum h(x) = f(x) + g(x) is also continuous.

ii. Scalar Multiplication : If f(x) is a continuous function and α ∈ R,
then the product α · f(x) is continuous.

4. The Vector Space of Polynomials R[x] :

(a) Description : The space R[x] consists of all polynomials with real coef-
ficients.

(b) Operations :

i. Polynomial Addition : If f(x) = 3x2 + 2x + 1 and g(x) = x3 − x,
their sum is :

f(x) + g(x) = 3x2 + 2x+ 1 + x3 − x = x3 + 3x2 + x+ 1

ii. Scalar Multiplication : If f(x) is a polynomial and α ∈ R, then :

α · f(x) = α(3x2 + 2x+ 1) = 3αx2 + 2αx+ α

Definition 1.2. Linear Combinations

Let E be a R-vector space, and let {x1, x2, . . . , xn} be a family of n vectors in E.
A linear combination of the family {x1, x2, . . . , xn} is any vector of the form :

n∑
i=1

λixi

where (λ1, λ2, . . . , λn) ∈ Rn are scalars in the field R.
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Example 1.2. Example : Linear Combination

Consider the vector space R2, which is the space of all 2-dimensional real vectors.
Let the vectors

v1 =

(
1

2

)
and v2 =

(
3

4

)
be two vectors in R2.

A linear combination of these two vectors is any vector of the form :

λ1v1 + λ2v2 = λ1

(
1

2

)
+ λ2

(
3

4

)

where λ1 and λ2 are scalars in R.

Let’s choose λ1 = 2 and λ2 = −1. The linear combination becomes :

2

(
1

2

)
+ (−1)

(
3

4

)
=

(
2

4

)
+

(
−3

−4

)
=

(
−1

0

)

Thus, the linear combination of v1 and v2 with scalars 2 and −1 results in the

vector

(
−1

0

)
.

1.2 Subspaces of Vector Spaces

1.2.1 Definition

Definition 1.3.

Let E be a vector space over K, and let F be a subset of E. For F to be a subspace
of E, the following conditions must be satisfied :

1. F is a subgroup of E.

2. ∀x ∈ F, ∀λ ∈ K, λx ∈ F .

or equivalently :

1. F 6= ∅.

2. ∀x, y ∈ F, x− y ∈ F .
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3. ∀x ∈ F, ∀λ ∈ K, λx ∈ F .

or equivalently :

1. F 6= ∅.

2. ∀x, y ∈ F, ∀λ, µ ∈ K;λx+ µy ∈ F .

Example 1.3. 1. {0} is a vector subspace of the vector space E. It is the smal-
lest subspace of E.

2. E itself is a vector subspace of E. It is the largest subspace of E.

3.
F :=

{
(x, y, z) ∈ R3 | 2x+ y − z = 0

}
.

is a subspace of R3.

4. F1 = {(x, y, z) ∈ R3 | 2x− y + 3z = 1} is not subspace of R3.

5. Let Kn[X] = {P ∈ K[X] | deg(P ) ≤ n} be the set of polynomials in K[X]

with degree at most n. This set is a vector subspace of K[X].

Proposition 1.4. Let F be a subspace of a K-vector space E, and let {fi}i∈I ⊂ F .
Then, any linear combination of the {fi}i∈I belongs to F .

1.2.2 Operations on vector subspaces

Recall that if F and G are sets, their intersection is the set of elements in F that
are also in G. Also, the union of F and G is the set of elements that belong to
either F or G (or both).
The union of two vector subspaces is not always a vector subspace.

Example 1.4. Let E1 = {(x, 0) | x ∈ R} and E2 = {(0, y) | y ∈ R}, which are
two subspaces of R2. The union E1 ∪ E2 is not a vector space.

Reasoning :

The sets E1 and E2 are both subspaces of R2, but their union is not closed under
vector addition. Consider the elements (1, 0) ∈ E1 and (0, 1) ∈ E2. The sum of
these two vectors is :

(1, 0) + (0, 1) = (1, 1).
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However, (1, 1) /∈ E1 ∪ E2, since neither (1, 1) is in E1 nor in E2. Therefore,
E1 ∪ E2 is not closed under addition, and hence it is not a subspace of R2.

Theorem 1.5. Let E1 and E2 be two vector subspaces of E. Then, E1 ∪ E2 is a
vector subspace if and only if E1 ⊂ E2 or E2 ⊂ E1.

Démonstration. We will show that if E1 ∪ E2 is a subspace, then E1 ⊂ E2 or
E2 ⊂ E1. To do this, we prove the contrapositive : if E1 6⊂ E2 and E2 6⊂ E1, then
E1∪E2 is not a subspace. Since E1 6⊂ E2 and E2 6⊂ E1, there exist elements x ∈ E1

such that x /∈ E2, and y ∈ E2 such that y /∈ E1. Then, x+ y /∈ E1 ∪E2. (Suppose
that x+y ∈ E1, since x ∈ E1, we would have x+y−x ∈ E1, which contradicts the
assumption that y /∈ E1). Thus, x+ y /∈ E1 ∪ E2, and since addition is not closed
in E1 ∪E2, it follows that E1 ∪E2 is not a subspace. The converse is obvious.

Proposition 1.6. The arbitrary intersection of vector subspaces is a vector sub-
space.

Definition 1.7. (Sum)

Let E be a K-vector space, and let F and G be two vector subspaces of E. The
sum of F and G, denoted F +G, is the set

F +G = {u+ v | u ∈ F and v ∈ G}.

Proposition 1.8. Let E1 and E2 be two vector subspaces of E, the set

E1 + E2 = {x1 + x2 | x1 ∈ E1, x2 ∈ E2}

has the following properties :

1. E1 + E2 is a vector subspace of E.

2. E1 ∪ E2 ⊆ E1 + E2.

3. E1 + E2 is the smallest vector subspace of E that contains E1 ∪ E2.

Remark 1.9.
Let F , G, and H be three vector subspaces of E. We have the following :

1. F +G = G+ F ; F + (G+H) = (F +G) +H ; F + {0} = F ; F +E = F ;
F + F = F .

2. If H = F +G, the expression F = H −G does not make sense.

3. If F +G = F +H, we cannot immediately conclude that G = H.
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Definition 1.10. Let E1 and E2 be two vector subspaces of E. We say that E1

and E2 are in direct sum in E (or that E1 is complementary to E2 in E) if one of
the following equivalent assertions is satisfied :

1.
E1 ∩ E2 = {0E}and E1 + E2 = E.

2. For every w ∈ E, there exists a unique pair of vectors (u, v) ∈ E1 ×E2 such
that w = u+ v.

Example 1.5. The vector subspaces of R3 :

F = {(a, a, a) ∈ R3 | a ∈ R} and G = {(x, y, z) ∈ R3 | x = y − 2z}

are in direct sum, since if (a, a, a) ∈ G, then a = a−2a, hence a = 0, and therefore
F ∩G = {(0, 0, 0)}.

Example 1.6. Let F2 = {(x, y, z) ∈ R3 | 2x − y = 0} and F3 = {(x, y, z) ∈ R3 |
x− 4y − z = 0}. Are the subspaces F2 and F3 complementary in R3 ?

Proposition 1.11. (Existence of Complementary Vector Subspaces) Let E be a
vector space over the field K. Every vector subspace of E has at least one comple-
mentary vector subspace.

1.2.3 Generated subspace

Theorem 1.12. Let v1, . . . , vn be a finite set of vectors in a vector space E over
a field K. Then :
– The set of linear combinations of the vectors v1, . . . , vn is a subspace of E.
– It is the smallest subspace of E (in the sense of inclusion) containing the vectors
v1, . . . , vn.

Notation. This subspace is called the subspace generated by v1, . . . , vn, and is
denoted Span(v1, . . . , vn). Therefore, we have :

u ∈ Span(v1, . . . , vn) ⇐⇒ ∃λ1, . . . , λn ∈ K such that u = λ1v1 + · · ·+ λnvn

Remark 1.13. 1. Saying that Span(v1, . . . , vn) is the smallest subspace of E
containing the vectors v1, . . . , vn means that if F is a subspace of E contai-
ning the vectors v1, . . . , vn, then Span(v1, . . . , vn) ⊆ F .
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2. More generally, we can define the subspace spanned by any subset V (not
necessarily finite) of a vector space : Span(V ) is the smallest subspace contai-
ning V .

Example 1.7.

1. The vector subspace of R3 generated by the set A = {(−2, 0, 1), (3, 1, 1)} is

Span(A) = {a(−2, 0, 1) + b(3, 1, 1) | a, b ∈ R} = {(−2a+ 3b, b, a+ b) | a, b ∈ R}.

2. In C2[X], let the vectors u = iX −X2 and v = 1 + i+X. Then

Span(u, v) = {α(iX−X2)+β(1+i+X) | α, β ∈ C} = {β(1+i)+(αi+β)X−βX2 | α, β ∈ C}.

Theorem 1.14. 1. Si un vecteur w est combinaison linéaire des vecteurs (v1, . . . , vn),
alors

Span(v1, . . . , vn, w) = Span(v1, . . . , vn)

2. Si un vecteur w est combinaison linéaire des vecteurs (v1, . . . , vk−1, vk+1, . . . , vn),
alors

Span(v1, . . . , vk−1, vk + w, vk+1, . . . , vn) = Span(v1, . . . , vn)

Example 1.8. Let v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1) in R3, and suppose
that w = v1 + v2 = (1, 1, 0).

1. First part of the theorem : Since w = v1 + v2, w is a linear combination
of v1 and v2. Therefore,

Span(v1, v2, v3, w) = Span(v1, v2, v3)

This means that adding w to the set (v1, v2, v3) does not change the space
spanned by v1, v2, v3.

2. Second part of the theorem : Now suppose we replace v1 by v1 + w. We
have :

v1 + w = (1, 0, 0) + (1, 1, 0) = (2, 1, 0)

And w = v1 + v2, which is already a linear combination of the vectors v1 and
v2. Therefore,

Span(v1 + w, v2, v3) = Span(v1, v2, v3)
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Thus, replacing v1 by v1 + w does not affect the space spanned by v1, v2, v3.

Theorem 1.15.

Let A and B be two subsets of a K-vector space E. Then :

1. A ⊆ B implies Span(A) ⊆ Span(B)

2. Span(A ∪B) = Span(A) + Span(B)

1.2.4 Generating, free and dependent families

Definition 1.16. (Generating familie)
Let E be a K-vector space and X = {xi | i ∈ I} a subset of E. We say that
the subset X is generating E or generates E if every element of E is a linear
combination of elements of X, i.e., E = Span(X).

Example 1.9. 1. Consider the set S = {e1, e2, e3}, where :

e1 =


1

0

0

 , e2 =


0

1

0

 , e3 =


0

0

1


This set S is called a generating set for the vector space R3 because every
vector in R3 can be written as a linear combination of the vectors in S.

Specifically, any vector v =


x

y

z

 ∈ R3 can be written as :

v = xe1 + ye2 + ze3

Thus, the set {e1, e2, e3} spans R3, meaning it generates the entire vector
space R3.

2. In C viewed as an R-vector space, the family {1, i} is generating.

3. Consider the vector space of polynomials of degree at most 4, denoted by
R2[X], which consists of all polynomials of the form :

p(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

A generating set for this space is the set :

{1, x, x2, x3, x4}
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This set is called a basis for P4, because every polynomial of degree at most
4 can be expressed as a linear combination of these elements. For instance,
the polynomial p(x) = 2 + 3x− 4x2 + x3 can be written as :

p(x) = 2 · 1 + 3 · x− 4 · x2 + 1 · x3 + 0 · x4

Thus, the set {1, x, x2, x3, x4} generates P4.

4. The family {Xk}k∈N generates R[X], and for all n ∈ N, the set {1, X, . . . , Xn}
generates Rn[X].

Remark 1.17. The generating set of a K-vector space is not unique.

Definition 1.18. (Free familie)
Let E be a K-vector space and let {v1, . . . , vn} be a family of vectors in E. We say
that the family {v1, . . . , vn} is free or linearly independent in E if :
for all λ1, . . . , λn ∈ K, λ1v1 + · · ·+ λnvn = 0E ⇒ λ1 = · · · = λn = 0K .

Example 1.10. Let E = R3 be the 3-dimensional Euclidean space, and consider
the set of vectors :

S =

v1 =


1

0

0

 ,v2 =


0

1

0

 ,v3 =


0

0

1




This set S = {v1,v2,v3} is linearly independent in R3.

Example 1.11. Consider the vector space R3[X], which is the space of all poly-
nomials of degree at most 3. A general element in P3 is of the form :

p(x) = a0 + a1x+ a2x
2 + a3x

3

Now, consider the set of polynomials :

S = {1, x, x2}

We will show that this set is linearly independent in P3. To verify this, suppose
that a linear combination of the elements in S equals the zero polynomial :

c1 · 1 + c2 · x+ c3 · x2 = 0
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This means that the polynomial :

c1 + c2x+ c3x
2 = 0

is the zero polynomial. For this to hold for all x, the coefficients of each power of
x must be zero. Therefore, we have the system of equations :

c1 = 0

c2 = 0

c3 = 0

Since the only solution to this system is c1 = c2 = c3 = 0, the set {1, x, x2} is
linearly independent in P3.

Definition 1.19. (dependent familie)
Let E be a K-vector space and let {v1, . . . , vn} be a family of vectors in E. We say
that the family {v1, . . . , vn} is dependent if it is not free, which means there exist
λ1, . . . , λn ∈ K such that (λ1, . . . , λn) 6= (0, . . . , 0) and λ1v1 + · · ·+ λnvn = 0E.

Example 1.12. Consider the following two vectors :

v1 =

(
1

2

)
, v2 =

(
2

4

)

These vectors are linearly dependent because v2 − 2 · v1 = 0.

Theorem 1.20.

Let n ≥ 2. The family {v1, v2, . . . , vn} is linearly dependent if and only if one of
the vectors v1, v2, . . . , vn is a linear combination of the others.

1.2.5 Base

Definition 1.21.

We say that the family {xi}i∈I is a basis of E if {xi}i∈I is a linearly independent
and generating family of E.

Example 1.13.
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1. {1, i} is a basis of the R-vector space C.

2. An example of a basis for R2 is the set of standard unit vectors :

{(
1

0

)
,

(
0

1

)}
.

3. An example of a basis for the space of polynomials of degree at most 3,
denoted R3[X], is the set :

{1, x, x2, x3}

Remark 1.22.

1. The empty set is a basis for the zero vector space.

2. There is no uniqueness of the basis for a given vector space.

Theorem 1.23.

Let B = {e1, e2, . . . , en} be a basis of a K-vector space E. Any element v of E can
be uniquely written as a linear combination of the ei’s :

v =
n∑

i=1

αiei where αi ∈ K.

The scalars αi are called the coordinates of v with respect to the basis B.

Proposition 1.24. Properties :

1. {x} is a linearly independent set if and only if x 6= 0.

2. Any family that contains a generating set is itself a generating set.

3. Any subfamily of a linearly independent family is linearly independent.

4. Any family that contains a dependent family is itself dependent.

5. Any family {v1, v2, . . . , vp} where one of the vectors vi is the zero vector is
dependent.

Theorem 1.25. Basis of a Direct Sum of Two Subspaces

Let E be a K-vector space, and let F and G be two non-trivial subspaces of E
(i.e., neither is reduced to {0}). If BF is a basis of F and BG is a basis of G, then
BF ∪BG is a generating set for F +G (the sum of the subspaces). Moreover, if F
and G are in direct sum, then BF ∪BG is a basis for F ⊕G (the direct sum of the
subspaces).
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Example 1.14. Example :

Consider the following vector subspaces in R4 :

F = Span {(1,−1, 0, 2)} and G = Span {(−2, 5, 3, 1), (1, 1,−2,−2)} .

Since (1,−1, 0, 2) 6= 0 in R4 and the vectors (−2, 5, 3, 1) and (1, 1,−2,−2) are not
collinear, it follows that {(1,−1, 0, 2)} is a basis for F and {(−2, 5, 3, 1), (1, 1,−2,−2)}
is a basis for G. Therefore, the set {(1,−1, 0, 2), (−2, 5, 3, 1), (1, 1,−2,−2)} is a
generating set for F +G.

1.3 Finite-Dimensional Vector Space

Definition 1.26.

1. Let {xi}i∈I be a family of elements of E. The cardinality of S is the number
of elements in S.

2. E is a finite-dimensional vector space if E has a generating set with finite
cardinality. Otherwise, E is an infinite-dimensional vector space.

Example 1.15. Examples :

1. The vector spaces Rn for n ∈ N and Rn[X] for n ∈ N are finite-dimensional.

2. R[X] is infinite-dimensional vector space.

Theorem 1.27.

All bases of the same vector space E have the same cardinality. This common
number is called the dimension of E. We denote it by dimE.

Theorem 1.28.

Every vector space E that is non-trivial (i.e., E 6= {0}) and finite-dimensional
admits a basis.

Corollary 1.29.

In a vector space of dimension n, we have the following :

1. Every linearly independent set has at most n elements.

2. Every generating set has at least n elements.

Remark 1.30.
If dimE = n, to show that a set of n elements is a basis of E, it is sufficient to
prove that it is either linearly independent or generating.
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Theorem 1.31. Incomplete Basis Theorem :

Let E be a finite-dimensional vector space and L a linearly independent set in E.
Then there exists a basis B of finite cardinality that contains L.

Theorem 1.32. Theorem 1.15 : Grassmann’s Formula

Let E be a finite-dimensional vector space and F , G be two subspaces of E. Then,

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G).

In particular, F and G are in direct sum if and only if

dim(F +G) = dim(F ) + dim(G).

Theorem 1.33. Theorem 1.16

If E is a finite-dimensional vector space and F is a subspace of E, then F is also
finite-dimensional, and we have

dim(F ) ≤ dim(E).

Furthermore,
dim(F ) = dim(E) if and only if F = E.

Remark 1.34. Remark :

The dimension of the zero vector space is 0.

Example 1.16. Examples :

1. dim(Kn) = n.

2. dim(Kn[X]) = n+ 1.

3. dim(K[X]) is infinite.

4. dimC C = 1 and dimR C = 2.

Theorem 1.35.

Let F and G be two subspaces of a finite-dimensional vector space E. Then F

and G are supplementary in E if and only if at least two of the following three
conditions are true :

1. dimF + dimG = dimE,

2. F ∩G = {0},

3. F +G = E.
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