Chapitre 1

Vector spaces

In this course, the field (K, +, x) denotes R, C or any commutative field.

1.1 Definition

Definition 1.1.
Let (E,+) be an abelian group and K a field. We say that E' is a vector space over

K or a K-vector space if there exists a map :

Kxb—FE

(Nz)— Nex

called the external multiplication law, and it must satisfy the following properties :
1. Vo,y€e EVAEK, e (x+y)= ez + Ney,
2. Ve e EV A peK, A+ p)ex=Nex+ pex,
3. Ve e EVApeK (Axp)exr=XNe(nox),
4. Vr e E, lx e x = x.

The elements of F are called vectors and those of K are called scalars. The neutral

element of the group (F, +) is denoted Og or 0 and is called the zero vector of E.

Rules of Calculation :
1. Bex=0g< =0 or z=0g.

2. Vee E;VBeK: —(B-x)=(—0)-z=p0-(—x).
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3. Ve e E\{0},\VB,ye K,B-z=v-x=[F="1.
4. Ve e E,Vb,....00 e K: > (Be-x)= 01 Br) .
5. Vxi,...,2, € EENBEeK: Y Brx=0- 1 k)

Example 1.1. Examples of Vector Spaces :
1. The Vector Space R" :

(a) Description : The space R™ consists of vectors with n real components.

(b) Ezample : The space R3 consists of vectors with three real components,

such as :
U1
v=|wvy|, v1,VU2,U3 eR
U3
(¢) Operations :
1. Vector Addition :
U1 + Wy
V+W=| v+ ws
U3 + ws
1. Scalar Multiplication :
1 avy
a-v=al|v| =|avs
(%R} QU3

2. The Vector Space C" :

(a) Description : The space C" consists of vectors with n complex compo-

nents.

(b) Ezample : The space C?* consists of vectors with two complex compo-

(%1
v = , v, eC
(%)

V1 + wy
V+WwW=
Vg + Wo

nents, such as :

(¢) Operations :
i. Vector Addition :
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1. Scalar Multiplication :

U1 QU
-V =« =
(%) (%)

3. The Vector Space of Continuous Functions C([a,b]) :

(a) Description : The space C([a,b]) consists of all continuous functions
defined on the interval |a, b].

(b) Ezample : If f(x) and g(z) are continuous functions on [a,b], then any
linear combination h(x) = af(x) + Bg(x) where a, f € R will also be a

continuous function on [a,b].
(c¢) Operations :

i. Function Addition : If f(x) and g(x) are continuous functions, then

their sum h(z) = f(x) + g(x) is also continuous.

ii. Scalar Multiplication : If f(x) is a continuous function and o € R,

then the product «v - f(x) is continuous.
4. The Vector Space of Polynomials R[z] :

(a) Description : The space R[x] consists of all polynomials with real coef-

ficients.
(b) Operations :

i. Polynomial Addition : If f(z) = 32>+ 2z + 1 and g(z) = z° — =,

their sum s :
f@)+g(z)=32"+22+1+2° —z=2"+32" + v + 1
ii. Scalar Multiplication : If f(x) is a polynomial and o € R, then :

a- f(z) = a(32® + 22 + 1) = 3az® + 2ax + «

Definition 1.2. Linear Combinations
Let E be a R-vector space, and let {x1,xs,...,2,} be a family of n vectors in F.

A linear combination of the family {z;,xs,...,x,} is any vector of the form :

n
g Ni;
i=1

where (Aq, Ay, ..., \,) € R™ are scalars in the field R.
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Example 1.2. Example : Linear Combination

Consider the vector space R2, which is the space of all 2-dimensional real vectors.

o) o)

A linear combination of these two vectors is any vector of the form :

1 3
)\1V1+)\2V2=)\1<)+)\2(>
2 4

where Ay and Ay are scalars in R.

Let the vectors

be two vectors in R2.

Let’s choose Ay = 2 and Ay = —1. The linear combination becomes :
1 3 2 -3 -1
2 +(—1) = + =
2 4 4 —4 0
Thus, the linear combination of vi and vy with scalars 2 and —1 results in the

—1
vector .

1.2 Subspaces of Vector Spaces

1.2.1 Definition

Definition 1.3.
Let E be a vector space over K, and let F' be a subset of E. For F' to be a subspace

of E, the following conditions must be satisfied :

1. F is a subgroup of FE.
2. Ve e FVYAe K A \r e F.

or equivalently :

1. F 0.
2. Ve,ye Fle—ye F.
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3. Vee FYAe K Az € F.
or equivalently :

1 F£0.
2. Ve,ye FYA\ pe K e+ uy € F.
Example 1.3. 1. {0} is a vector subspace of the vector space E. It is the smal-
lest subspace of E.
2. E itself is a vector subspace of E. It is the largest subspace of E.
3.
F:={(z,y,2) eR® |22+ y—2=0}.
is a subspace of R3.
4. Fy ={(z,y,2) € R® | 2z — y + 32 = 1} is not subspace of R>.
5. Let K,[X] = {P € K[X] | deg(P) < n} be the set of polynomials in K[X]

with degree at most n. This set is a vector subspace of K[X].

Proposition 1.4. Let F' be a subspace of a K-vector space E, and let { f;}ier C F.

Then, any linear combination of the { f;}icr belongs to F'.

1.2.2 Operations on vector subspaces

Recall that if F' and G are sets, their intersection is the set of elements in F' that
are also in G. Also, the union of F' and G is the set of elements that belong to
either F' or G (or both).

The union of two vector subspaces is not always a vector subspace.

Example 1.4. Let Fy = {(2,0) | x € R} and By = {(0,y) | y € R}, which are

two subspaces of R%. The union E, U E, is not a vector space.
Reasoning :

The sets By and E, are both subspaces of R?, but their union is not closed under
vector addition. Consider the elements (1,0) € Ey and (0,1) € Ey. The sum of

these two vectors is :

(1,0) + (0,1) = (1, 1).
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However, (1,1) ¢ E; U Es, since neither (1,1) is in Ey nor in Ey. Therefore,

E, U E, is not closed under addition, and hence it is not a subspace of R2.

Theorem 1.5. Let Ey and Es be two vector subspaces of E. Then, F1 U Es is a
vector subspace if and only if B4 C Ey or E5 C Ej.

Démonstration. We will show that if £y U E5 is a subspace, then E; C Es or
E> C E;. To do this, we prove the contrapositive : if Fy ¢ Ey and Es ¢ Ej, then
E1UE; is not a subspace. Since Fy ¢ Fy and Fy ¢ FEy, there exist elements x € E)
such that ¢ Fs, and y € E; such that y ¢ E;. Then, x +vy ¢ E; U E5. (Suppose
that x4y € FE, since x € E, we would have x +y—x € F;, which contradicts the
assumption that y ¢ E). Thus, x +y ¢ E; U Es, and since addition is not closed

in E7 U E», it follows that F; U E5 is not a subspace. The converse is obvious. [

Proposition 1.6. The arbitrary intersection of vector subspaces is a vector sub-

space.

Definition 1.7. (Sum)
Let E be a K-vector space, and let F' and G be two vector subspaces of E. The
sum of ' and (G, denoted F' + G, is the set

F+G={u+v|ueF andveG}.
Proposition 1.8. Let Fy and Ey be two vector subspaces of E, the set
Ei+ Ey={x1+ x5 | 21 € E1,29 € E5}
has the following properties :

1. Ey + E5 s a vector subspace of E.
2. E1UFEy, C By + E».
3. Ey + Es is the smallest vector subspace of E that contains E1 U FEs.

Remark 1.9.
Let F', G, and H be three vector subspaces of E. We have the following :

1. F+G=G+F;F+(G+H)=(F+G)+H; F+{0}=F; F+E=F,
F+F=F.

2. It H=F + G, the expression F' = H — G does not make sense.
3. If F+G = F + H, we cannot immediately conclude that G = H.
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Definition 1.10. Let E; and FEs be two vector subspaces of E. We say that E;
and Fs are in direct sum in E (or that F; is complementary to Es in E) if one of

the following equivalent assertions is satisfied :

1.
E1 N E2 = {OE}and E1 + Eg =F.

2. For every w € F, there exists a unique pair of vectors (u,v) € E; X Ey such

that w = u + v.

Example 1.5. The vector subspaces of R3 :
F={(a,a,a) cR*|a€R} and G={(z,y,2) ER® |z =y—22}

are in direct sum, since if (a,a,a) € G, then a = a—2a, hence a = 0, and therefore

FNG={(0,0,0)}.

Example 1.6. Let Fy = {(z,y,2) € R® | 22 —y = 0} and F3 = {(z,y,2) € R? |
x — 4y — 2 = 0}. Are the subspaces Fy and F3 complementary in R3 ?

Proposition 1.11. (Ezistence of Complementary Vector Subspaces) Let E be a
vector space over the field K. Every vector subspace of E has at least one comple-

mentary vector subspace.

1.2.3 Generated subspace

Theorem 1.12. Let vy, ...,v, be a finite set of vectors in a vector space E over
a field K. Then :
— The set of linear combinations of the vectors vy, ..., v, is a subspace of E.

— It is the smallest subspace of E (in the sense of inclusion) containing the vectors

Viy.ooyUp.
Notation. This subspace is called the subspace generated by vy,...,v,, and is
denoted Span(vy, ..., v,). Therefore, we have :

uw € Span(vy,...,v,) <= J\,..., A\, € K such that u = \jvy; + -+ -+ Ao,

Remark 1.13. 1. Saying that Span(vy,...,v,) is the smallest subspace of E
containing the vectors vy, ..., v, means that if F'is a subspace of E contai-

ning the vectors vy, ..., v,, then Span(vy,...,v,) C F.
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2. More generally, we can define the subspace spanned by any subset V' (not
necessarily finite) of a vector space : Span(V/) is the smallest subspace contai-

ning V.

Example 1.7.

1. The vector subspace of R® generated by the set A = {(—2,0,1),(3,1,1)} is

Span(A) = {a(—2,0,1) +b(3,1,1) | a,b € R} = {(—2a +3b,b,a+b) | a,b € R}.

2. In C*[X], let the vectors u=1X — X? andv=1+1i+ X. Then

Span(u,v) = {a(iX - X*)+B(1+i+X) | o, € C} = {B(1+i)+(ai+B) X —BX?* | a, B € C}.

Theorem 1.14. 1. Siun vecteur w est combinaison linéaire des vecteurs (vy, ..., v,),
alors
Span(vy, ..., vy, w) = Span(vy, ..., v,)
2. Siun vecteur w est combinaison linéaire des vecteurs (v1, ..., Vg_1, Ugs1,- -+, Un),
alors
Span(vy, ..., Vg—1, Uk + W, Vgs1, - - -, Un) = Span(vy, ..., vy,)

Example 1.8. Let v; = (1,0,0),v2 = (0,1,0),v3 = (0,0,1) in R, and suppose
that w = vy + vy = (1,1,0).

1. First part of the theorem : Since w = vy + v9, w is a linear combination

of v1 and vy. Therefore,
Span(vy, va, v3, w) = Span(vy, v, v3)

This means that adding w to the set (vy,ve,v3) does not change the space
spanned by vy, vy, V3.
2. Second part of the theorem : Now suppose we replace vi by vy +w. We

have :
v +w=(1,0,0)+(1,1,0) = (2,1,0)

And w = vy + v9, which is already a linear combination of the vectors v and
vo. Therefore,

Span(vy + w, vg, v3) = Span(vy, vg, v3)
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Thus, replacing vy by v1 +w does not affect the space spanned by vy, vq, V3.
Theorem 1.15.
Let A and B be two subsets of a K-vector space EE. Then :
1. A C B implies Span(A) C Span(B)
2. Span(A U B) = Span(A) + Span(B)

1.2.4 Generating, free and dependent families

Definition 1.16. (Generating familie)
Let E be a K-vector space and X = {z; | i € I} a subset of E. We say that
the subset X is generating F or generates F if every element of E is a linear

combination of elements of X i.e., E = Span(X).

Example 1.9. 1. Consider the set S = {ej1,ez,e3}, where :

0 0
e=11]|, es=10
1

0

e —

o O =

This set S is called a generating set for the vector space R® because every

vector in R® can be written as a linear combination of the wvectors in S.

x
Specifically, any vector v.= | y | € R® can be written as :

z
V = ze; + yes + zes

Thus, the set {e1, ey, es3} spans R3, meaning it generates the entire vector
space R3.
2. In C viewed as an R-vector space, the family {1,i} is generating.

3. Consider the vector space of polynomials of degree at most 4, denoted by

Ry [X], which consists of all polynomials of the form :

p(r) = ap + arz + ast? + azr® + agxt

A generating set for this space is the set :

{]-7 T, xzv ZL’3, IA}
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This set is called a basts for Py, because every polynomial of degree at most
4 can be expressed as a linear combination of these elements. For instance,

the polynomial p(x) = 2 + 3z — 4x® + 23 can be written as :

p()=2-1+3-2—4-22+1-2°+0-2*

Thus, the set {1, z, 2 23 2*} generates Pj.

4. The family { X*}ren generates R[X], and for alln € N, the set {1, X, ..., X"}
generates R, [X].

Remark 1.17. The generating set of a K-vector space is not unique.

Definition 1.18. (Free familie)

Let E be a K-vector space and let {vy,...,v,} be a family of vectors in E. We say
that the family {vy,...,v,} is free or linearly independent in FE if :

forall \,..., N, e K, Moy +---+ v, =0 = A\ =+ =\, = 0g.

Example 1.10. Let E = R? be the 3-dimensional Euclidean space, and consider

the set of vectors :

This set S = {vy,Vva,v3} is linearly independent in R3.

Example 1.11. Consider the vector space R3[X|, which is the space of all poly-

nomials of degree at most 3. A general element in P3 is of the form :
3

p(z) = ag + a1z + ax® + azx

Now, consider the set of polynomials :

S ={1,z,2%}

We will show that this set is linearly independent in Ps. To verify this, suppose

that a linear combination of the elements in S equals the zero polynomial :

c-l+c-r+cy-22=0
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This means that the polynomial :

c1+ e+ c3x? =0

1s the zero polynomial. For this to hold for all x, the coefficients of each power of

x must be zero. Therefore, we have the system of equations :

01:0
02:0
63:0

Since the only solution to this system is ¢; = co = c3 = 0, the set {1,z,2°} is

linearly independent in Ps.

Definition 1.19. (dependent familie)

Let E be a K-vector space and let {vy,...,v,} be a family of vectors in . We say
that the family {v1,...,v,} is dependent if it is not free, which means there exist
Ay Ap € Kosuch that (A, ..., A,) #(0,...,0) and Aoy + -+ + A\v, = 0p.

Example 1.12. Consider the following two vectors :

) 0

These vectors are linearly dependent because vo — 2 - vy = 0.

Theorem 1.20.
Let n > 2. The family {vy,vs, ..., v,} is linearly dependent if and only if one of

the vectors vy, vq, ..., v, 1S a linear combination of the others.

1.2.5 Base

Definition 1.21.
We say that the family {z;};c; is a basis of F if {x;};c; is a linearly independent
and generating family of E.

Example 1.13.



Chapter 1. Logic concepts 15

1. {1,i} is a basis of the R-vector space C.

2. An example of a basis for R? is the set of standard unit vectors :

)0}

3. An example of a basis for the space of polynomials of degree at most 3,
denoted R3[X], is the set :

{1,:15,352,3:3}

Remark 1.22.

1. The empty set is a basis for the zero vector space.
2. There is no uniqueness of the basis for a given vector space.
Theorem 1.23.

Let B ={ey,eq,...,e,} be a basis of a K-vector space E. Any element v of E can

be uniquely written as a linear combination of the e;’s :
V= Zaiei where a; € K.
i=1
The scalars «; are called the coordinates of v with respect to the basis B.

Proposition 1.24. Properties :

1. {z} is a linearly independent set if and only if x # 0.
Any family that contains a generating set is itself a generating set.
Any subfamily of a linearly independent family is linearly independent.

Any family that contains a dependent family is itself dependent.

Any family {v1,ve,...,v,} where one of the vectors v; is the zero vector is

dependent.

Theorem 1.25. Basis of a Direct Sum of Two Subspaces

Let E be a K-vector space, and let F' and G be two non-trivial subspaces of E
(i.e., neither is reduced to {0} ). If Br is a basis of F' and B¢ is a basis of G, then
Br U Bg is a generating set for F + G (the sum of the subspaces). Moreover, if F
and G are in direct sum, then Br U Bg is a basis for F @& G (the direct sum of the

subspaces).
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Example 1.14. Example :

Consider the following vector subspaces in R* :
F = Span{(1,-1,0,2)} and G = Span{(-2,5,3,1),(1,1,—2,—-2)}.

Since (1,—1,0,2) # 0 in R* and the vectors (—2,5,3,1) and (1,1, -2, —2) are not
collinear, it follows that {(1,—1,0,2)} is a basis for F' and {(—2,5,3,1), (1,1, -2,—-2)}
is a basis for G. Therefore, the set {(1,—1,0,2),(—2,5,3,1),(1,1,—-2,—-2)} is a
generating set for F' + G.

1.3 Finite-Dimensional Vector Space

Definition 1.26.

1. Let {x;}ics be a family of elements of E. The cardinality of S is the number

of elements in S.
2. F is a finite-dimensional vector space if E has a generating set with finite
cardinality. Otherwise, F is an infinite-dimensional vector space.
Example 1.15. Examples :
1. The vector spaces R™ for n € N and R, [X] for n € N are finite-dimensional.
2. R[X] is infinite-dimensional vector space.
Theorem 1.27.

All bases of the same vector space E have the same cardinality. This common

number is called the dimension of E. We denote it by dim E.

Theorem 1.28.
FEvery vector space E that is non-trivial (i.e., E # {0}) and finite-dimensional

admits a basis.

Corollary 1.29.

In a vector space of dimension n, we have the following :
1. Fvery linearly independent set has at most n elements.
2. Every generating set has at least n elements.

Remark 1.30.

If dim E = n, to show that a set of n elements is a basis of F, it is sufficient to

prove that it is either linearly independent or generating.
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Theorem 1.31. Incomplete Basis Theorem :
Let E be a finite-dimensional vector space and L a linearly independent set in E.

Then there exists a basis B of finite cardinality that contains L.

Theorem 1.32. Theorem 1.15 : Grassmann’s Formula

Let E be a finite-dimensional vector space and F, G be two subspaces of E. Then,
dim(F + G) = dim(F) + dim(G) — dim(F N G).
In particular, ' and G are in direct sum if and only if
dim(F + @) = dim(F) + dim(G).

Theorem 1.33. Theorem 1.16
If E is a finite-dimensional vector space and F is a subspace of E, then F' is also

finite-dimensional, and we have
dim(F) < dim(FE).

Furthermore,

dim(F) = dim(F) if and only if F = E.

Remark 1.34. Remark :

The dimension of the zero vector space is 0.

Example 1.16. Examples :
1. dim(K") = n.
2. dim(K,[X]) =n+ 1.
3. dim(K[X]) is infinite.
4. dimcC =1 and dimgC = 2.
Theorem 1.35.
Let F' and G be two subspaces of a finite-dimensional vector space E. Then F

and G are supplementary in E if and only if at least two of the following three

conditions are true :
1. dim F' 4+ dim G = dim F,
2. FNG = {0},
3. F+G=F.
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