# Abdelhafid Boussouf University Center- Mila

Institute of Sciences and Technology

Module: Analysis 1 January 2025 Academic Year: 2024/2025 First Year Engineering

Semester 1

Duration: 90 minutes

الإمتحان النهائي: التحليل 1 Final exam: Analysis 1

# Exercise 1: (4 points)

Let  $B = \left\{ \frac{n-1}{2n+1}, \ n \in \mathbb{N}^* \right\}$ .

.  $B = \left\{ \frac{n-1}{2n+1}, \ n \in \mathbb{N}^* \right\}$  لتكن

1) Show that B is a non-empty, bounded set.

ين أن B مجموعة غير خالية محدودة. (1)

2) Show that  $\sup(B) = \frac{1}{2}$ .

.  $\sup(B) = \frac{1}{2}$  يين أن (2

3) Show that  $\inf(B) = \min(B) = 0$ .

.  $\inf(B) = \min(B) = 0$  يين أن (3

4) Show that max(B) does not exist.

بين أن  $\max(B)$  غير مو جود. (4)

# Exercise 2: (6 points)

Consider the sequence  $(U_n)_{n\in\mathbb{N}}$  defined by:

نعتبر المتتالية  $(U_n)_{n\in\mathbb{N}}$  معرفة بـ:

$$\begin{cases} U_0 > 0 \\ U_{n+1} = \ln(1 + U_n), \quad \forall n \in \mathbb{N} \end{cases}$$

1. Show that  $0 < U_n$  for all  $n \in \mathbb{N}$ .

.  $n \in \mathbb{N}$  من أجل كل  $0 < U_n$  .1

2. Define  $g(x) = \ln(1+x) - x$ . Study the variations of g on  $]0, +\infty[$ , and specify its sign on  $]0, +\infty[$ .  $]0, +\infty[$  فعرف  $]0, +\infty[$  فعلى  $]0, +\infty[$  أدرس تغير  $]0, +\infty[$  فعلى  $]0, +\infty[$  وحدد إشارتها على  $]0, +\infty[$  أدرس تغير  $]0, +\infty[$  فعلى  $]0, +\infty[$ 

3. Deduce the monotonicity of  $(U_n)_{n\in\mathbb{N}}$ .

.  $(U_n)_{n\in\mathbb{N}}$  . استنتج رتابة

4. Conclude that  $(U_n)_{n\in\mathbb{N}}$  is convergent and calculate its limit.

متقاربة و أحسب نهايتها.  $(U_n)_{n\in\mathbb{N}}$  متقاربة و أحسب نهايتها.

5. Let  $E = \{U_n/n \in \mathbb{N}\}$ . Determine inf E and show that  $\sup E$  is positive.

عين  $\operatorname{sup} E$  و بين أن  $\operatorname{sup} E$  موجب.  $E = \{U_n/n \in \mathbb{N}\}$  موجب.

## Exercise 3: (4 points)

Let

لتكن

$$f(x) = \begin{cases} xe^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Using the definitions, show whether f(x):

f(x) : f(x) التعريفات، بين إذا ما كانت

1) is continuous at x = 0.

. x = 0 مستمرة عند (1

 $(Where \lim_{x \to x_0} f(x) = l \iff \forall \epsilon > 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies |f(x) - l| < \epsilon)$ 

2) has a derivative at x = 0.

. x=0 لديها مشتقة عند (2

## Exercise 4: (3 points)

(أو جد ):Find

$$(1)\frac{d\sin^2(x^2+1)}{dx}$$

$$(2)\frac{d\arccos(x)}{dx}$$

$$(1)\frac{d\sin^2(x^2+1)}{dx} \qquad (2)\frac{d\arccos(x)}{dx} \qquad (3)\lim_{x\to+\infty}\frac{\ln(3e^{3x}-5x)}{x}$$

# Exercise 5: (3 points)

1. The speed v of waves in shallow water is given by:

السرعة v لأمواج في المياه الضحلة تعطى بـ  $v^2=1.8L anh rac{6.3d}{L}$ 

$$v^2 = 1.8L \tanh \frac{6.3d}{L}$$

where d is the depth and L the wavelength. If d = 30 and L = 270, calculate the value of v.

. v مو عمق الماء و L=270 مو طول الموجة. إذا كان d=30 و d=4 أحسب قيمة

2. The functions

الدالتان

$$f_1(x) = \tanh x, \quad f_2(x) = \frac{1}{1 + e^{-x}}$$

are two different forms of activating functions representing the output of a neuron in a typical neural network. show that  $f_1(x) - 2f_2(2x) = -1$ .

هما شكلان مختلفان من دوال التنشيط تمثلان مخرج عصبون في شبكة عصبية أنَّمُوذجيةُ خَاْصة بالذكاء الإصطناعي. .  $f_1(x) - 2f_2(2x) = -1$  من أن

......Good luck بالتوفيق