

Good Juck

<u>Exam</u>

Exercise 1 : (3.5pts)

Draw the truth table of the following statements :

- 1. $(P \land Q) \Longrightarrow Q$
- 2. $(P \lor \overline{Q}) \Longrightarrow (\overline{P} \land Q)$

Exercise 2: (3.5pts)

1. Determine the length of *h* such that

$$2h(h+1) = -1$$

2. Write *h* in trigonometric form.

Exercise 3: (5.5pts)

Let f(x) be a function defined by its inverse function as :

$$f^{-1} \colon \mathbb{R} \to \mathbb{R}$$
$$x \to f^{-1}(x) = 2^x$$

- 1. Is f^{-1} injective?
- 2. Show that the function f^{-1} is not surjective.
- 3. Restrict the codomain of f^{-1} so that it becomes a bijective function.
- 4. Determine *f* the inverse function of f^{-1} .

Exercise 4: (8.5pts)

Let * and # be two operations on $\mathbb{C}^{-\{i\}}$ defined as follows :

 $\forall a, b \in \mathbb{C}^{-\{i\}} : a * b = a + b + iab \quad , \qquad a \# b = a + b - i$

- 1. Prove that $(\mathbb{C}^{-\{i\}}, *)$ is a group
- 2. Is * distributive over #?
- 3. Is # satisfies Identity element and the inverse element properties ?
- 4. Is $(\mathbb{C}^{-\{i\}}, \#)$ a group ?