Chapter 4: Common functions

By Hocine RANDJI
randji.h@centre-univ-mila.dz

Abdelhafid Boussouf University Center- Mila- Algeria
Institute of Science and Technology
First Year Engineering
Module: Analysis 1
Semester 1

Academic Year: 2024/2025

Plan

- References
- Inverse function
- Exponential Functions
- Logarithmic Function
- Trigonometric functions
- Inverse trigonometric (circular) functions.
- Hyperbolic functions.
- Inverse hyperbolic functions.

بالعربية:

• بابا حامد، بن حبيب، التحيل 1 تذكير بالدروس و تمارين محلولة عدد 300 ترجمة الحفيظ مقران، ديوان المطبوعات الجامعية (الفصل الخامس).

In English:

- Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968), (Chapter 2).
- Robert C. Wrede, Murray R. Spiegel, Schaum's Outlines: Advanced Calculus, (2011), (Chapter 3).
- Terence Tao, Analysis 1 (3rd edition), Springer (2016).

En français:

- BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI Mathématiques et Informatique, U.S.T.O 2020-2021 (Chapitre 4).
- Benzine BENZINE, Analyse réelle cours et exercices corriges, première année maths et informatique (2016), (Chapitre 3).

Inverse function

Theorem

A function f that is continuous and strictly monotonic from an interval $I \subseteq \mathbb{R}$ to \mathbb{R} is bijective on I to f(I). Its inverse function $f^{-1}: f(I) \to I$ exists, is continuous, and follows the monotonicity of f.

Proof:

The function f is surjective from I to f(I). Since f is strictly monotonic, it is also injective, making f bijective on f(I). Thus, f^{-1} exists and follows the monotonicity of f. For example, if f is strictly increasing, let $y_1, y_2 \in f(I)$ such that $y_1 < y_2$. Then:

$$y_1 \neq y_2 \implies f^{-1}(y_1) \neq f^{-1}(y_2)$$

and there exist $x_1, x_2 \in I$ such that:

$$f^{-1}(y_1) = x_1, \quad f^{-1}(y_2) = x_2.$$

If we assume $x_1 > x_2$, then since f is strictly increasing, we get:

$$f(x_1) > f(x_2),$$

which contradicts $y_1 < y_2$. Hence:

$$x_1 < x_2 \iff f^{-1}(y_1) < f^{-1}(y_2).$$

Thus, f^{-1} is strictly increasing. Moreover, since f is continuous on I, f(I) is an interval, and f^{-1} is continuous.

Exponential Functions

Definition: The exponential function is defined as $f(x) = a^x$, where a > 0 and $a \ne 1$. The exponential function, denoted by exp, is the unique differentiable function on \mathbb{R} that is equal to its derivative and satisfies $\exp(0) = 1$.

Properties:

- 1. $\exp(x) > 0, \forall x \in \mathbb{R}$.
- 2. $\exp(x + y) = \exp(x) \exp(y), \forall x, y \in \mathbb{R}$.
- 3. Using Euler's notation: $\exp(x) = e^x$, where $e \approx 2.718$.
- 4. The function exp is strictly increasing on \mathbb{R} .
- 5. $e^x = e^y \iff x = y$, $e^x < e^y \iff x < y$.
- 6. exp is a bijection from \mathbb{R} to \mathbb{R}_*^+ .

Logarithmic Functions

Definition: The logarithmic function is given by $f(x) = \log_a x$, where a > 0 and $a \ne 1$. This function is the inverse of the exponential function. When $a = e \approx 2.71828$, the function becomes $f(x) = \ln x$, called the *natural logarithm*. The natural logarithm function is defined on $(0, +\infty)$ to \mathbb{R} such that:

$$\forall x > 0 : x = e^y \iff y = \ln x.$$

Properties:

- 1. $\ln 1 = 0$, $\ln e = 1$.
- 2. $\ln(e^x) = x$, $e^{\ln x} = x$, $\forall x > 0$.
- 3. In is strictly increasing on $(0, +\infty)$.
- 4. $\ln(xy) = \ln x + \ln y$, $\ln\left(\frac{1}{y}\right) = -\ln y$.
- 5. $ln(x^n) = n ln x$, $\forall n \in \mathbb{N}$.

Figure: Source: BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI

Trigonometric Functions

The standard trigonometric functions include:

$$\sin x$$
, $\cos x$, $\tan x = \frac{\sin x}{\cos x}$, $\csc x = \frac{1}{\sin x}$, $\sec x = \frac{1}{\cos x}$, $\cot x = \frac{\cos x}{\sin x}$.

- The variable x is generally expressed in radians (π radians = 180°). - For real values of x, $\sin x$ and $\cos x$ lie in the range [-1, 1].

Key Properties of Trigonometric Functions

1. Pythagorean Identities:

$$\sin^2 x + \cos^2 x = 1$$
, $1 + \tan^2 x = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$.

2. Angle Addition and Subtraction Formulas:

$$\sin(x\pm y) = \sin x \cos y \pm \cos x \sin y$$
, $\cos(x\pm y) = \cos x \cos y \mp \sin x \sin y$.

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}.$$

3. Sign Change Properties:

$$sin(-x) = -sin x$$
, $cos(-x) = cos x$, $tan(-x) = -tan x$.

Inverse Trigonometric Functions: arcsin

Function arcsin

The function:

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1], \quad x \mapsto f(x) = \sin x$$

is continuous and strictly increasing on $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Therefore, f is bijective, and its inverse function exists. It is continuous and strictly increasing. We have:

$$f\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right) = [-1,1]$$

and

$$f^{-1}: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad y \mapsto f^{-1}(y) = \arcsin y.$$

$$\arcsin y = x \iff \sin x = y, \quad -1 \le y \le 1, \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}.$$

Inverse Trigonometric Functions: arccos

Function arccos

The function:

$$f: [0, \pi] \to [-1, 1], \quad x \mapsto f(x) = \cos x$$

is continuous and strictly decreasing on $[0, \pi]$. Therefore, f is bijective, and its inverse function exists. It is continuous and strictly decreasing. We have:

$$f([0,\pi]) = [-1,1]$$

and

$$f^{-1}: [-1,1] \to [0,\pi], \quad y \mapsto f^{-1}(y) = \arccos y.$$

$$\arccos y = x \iff \cos x = y, \quad -1 \le y \le 1, \quad 0 \le x \le \pi.$$

Inverse Trigonometric Functions: arctan

Function arctan

The function:

$$f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R},\quad x\mapsto f(x)=\tan x=\frac{\sin x}{\cos x}$$

is continuous and strictly increasing on $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Therefore, f is bijective, and its inverse function exists. It is continuous and strictly increasing. We have:

$$f\left(\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\right) = \mathbb{R}$$

and

$$f^{-1}: \mathbb{R} o \left(-rac{\pi}{2}, rac{\pi}{2}
ight), \quad y \mapsto f^{-1}(y) = \operatorname{arctan} y.$$

Inverse Trigonometric Functions: arccot

Function arccot

The function:

$$f:(0,\pi)\to(-\infty,+\infty), \quad x\mapsto f(x)=\cot x=\frac{\cos x}{\sin x}$$

is continuous and strictly decreasing on $(0, \pi)$. Therefore, f is bijective, and its inverse function exists. It is continuous and strictly decreasing. We have:

$$f((0,\pi))=(-\infty,+\infty)$$

and

$$f^{-1}:(-\infty,+\infty)\to(0,\pi),\quad y\mapsto f^{-1}(y)=\operatorname{arccot} y.$$

$$arccot \ y = x \iff \cot x = y, \quad 0 < x < \pi.$$

Properties of Inverse Trigonometric Functions

Properties:

1. For all $x \in [-1, 1]$:

$$\arcsin x + \arccos x = \frac{\pi}{2}.$$

2. If $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$\sin t = x \iff \arcsin x = t$$
.

Otherwise:

$$\sin t = x \iff t = \arcsin x + 2k\pi \text{ or } t = (\pi - \arcsin x) + 2k\pi, \quad k \in \mathbb{Z}.$$

3. If $t \in [0, \pi]$:

$$\cos t = x \iff \arccos x = t.$$

Otherwise:

$$\cos t = x \iff t = \arccos x + 2k\pi \text{ or } t = -\arccos x + 2k\pi, \quad k \in \mathbb{Z}.$$

Hyperbolic Functions

Definition: The hyperbolic cosine function, cosh, and hyperbolic sine function, sinh, are defined as:

$$\cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2}.$$

Properties:

- 1. $\cosh^2 x \sinh^2 x = 1$.
- 2. $\frac{d}{dx} \cosh x = \sinh x$, $\frac{d}{dx} \sinh x = \cosh x$.
- 3. $\cosh(-x) = \cosh x$, $\sinh(-x) = -\sinh x$.

Hyperbolic Functions and Their Inverses

Properties: $\cosh x$ is even, continuous, and strictly increasing on $[0, +\infty)$. Its inverse function \cosh^{-1} exists, is continuous, and strictly increasing. We have:

$$f([0,+\infty))=[1,+\infty)$$

and

$$f^{-1}: [1, +\infty) \to [0, +\infty), \quad y \mapsto f^{-1}(y) = \operatorname{arccosh}(y).$$

$$\operatorname{arccosh}(y) = x \iff \cosh x = y, \quad x \ge 0.$$

Hyperbolic Sine Function

Definition: Hyperbolic Sine Function sinh:

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \sinh x = \frac{e^x - e^{-x}}{2}$$

Properties: $\sinh x$ is odd, continuous, and strictly increasing on \mathbb{R} . Its inverse function \sinh^{-1} exists, is continuous, and strictly increasing. We have:

$$f(\mathbb{R}) = \mathbb{R}$$

and

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \quad y \mapsto f^{-1}(y) = \operatorname{arcsinh}(y).$$

$$\operatorname{arcsinh}(y) = x \iff \sinh x = y, \quad x \in \mathbb{R}.$$

Hyperbolic Tangent Function

Definition: Hyperbolic Tangent Function tanh:

$$f: \mathbb{R} \to (-1,1), \quad x \mapsto \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Properties: tanh x is odd, continuous, and strictly increasing on \mathbb{R} . Its inverse function $tanh^{-1}$ exists, is continuous, and strictly increasing. We have:

$$f(\mathbb{R})=(-1,1)$$

and

$$f^{-1}:(-1,1)\to\mathbb{R},\quad y\mapsto f^{-1}(y)=\operatorname{arctanh}(y).$$

$$\operatorname{arctanh}(y) = x \iff \tanh x = y, \quad |y| < 1.$$

Hyperbolic Cotangent Function

Definition: Hyperbolic Cotangent Function coth:

$$f: (0, +\infty) \to (1, +\infty), \quad x \mapsto \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Properties: $\coth x$ is odd, continuous, and strictly decreasing on $(0, +\infty)$. Its inverse function \coth^{-1} exists, is continuous, and strictly decreasing. We have:

$$f((0,+\infty))=(1,+\infty)$$

and

$$f^{-1}:(1,+\infty)\to(0,+\infty),\quad y\mapsto f^{-1}(y)=\operatorname{argcoth}(y).$$

$$\operatorname{argcoth}(y) = x \iff \operatorname{coth} x = y, \quad x > 0.$$

Properties of Hyperbolic Functions

Properties

- 3 $\cosh^2 x \sinh^2 x = 1$:
- $1 \tanh^2 x = \operatorname{sech}^2 x:$

Expression in Logarithmic Form

The inverse functions of hyperbolic functions can be expressed using the natural logarithm as follows:

$$\begin{aligned} & \mathit{arctanhx} = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), \quad x \in]-1,1[\\ & \mathit{arccothx} = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right), \quad x \in]-1,-1[\cup [1,+1[\\ & \mathit{arcsinhx} = \ln \left(x + \sqrt{1+x^2} \right), \quad x \in \mathbb{R} \\ & \mathit{arccoshx} = \ln \left(x + \sqrt{x^2-1} \right), \quad x \geq 1 \end{aligned}$$

Proof:

1.

• Let $x \in]-1,1[$, and set arctanhx = y.

$$\tanh y = x \implies \frac{e^y - e^{-y}}{e^y + e^{-y}} = x$$

$$1 - e^{-2y} = x(1 + e^{-2y}) \implies e^{-2y}(1 + x) = 1 - x$$

$$e^{2y} = \frac{1+x}{1-x} \implies 2y = \ln\left(\frac{1+x}{1-x}\right) \implies y = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$$

Proofs for Inverse Hyperbolic Functions

- 2. For $x \in]-1,-1[\cup[1,+1[:$
 - Assume arccothx = y.

$$coth y = x \implies \frac{e^y + e^{-y}}{e^y - e^{-y}} = x$$

$$\frac{1 + e^{-2y}}{1 - e^{-2y}} = x \implies 1 + e^{-2y} = x(1 - e^{-2y})$$

$$e^{-2y}(1 + x) = x - 1 \implies e^{2y} = \frac{1 + x}{x - 1}$$

$$2y = \ln\left(\frac{1 + x}{x - 1}\right) \implies y = \operatorname{arccoth} x = \frac{1}{2}\ln\left(\frac{1 + x}{x - 1}\right)$$

3. For $x \in \mathbb{R}$:

• Assume arcsinhx = y.

$$sinh y = x$$

• Using the identities:

$$e^y = \sinh y + \cosh y$$
 and $\cosh y = \sqrt{\sinh^2 y + 1}$

• We have:

$$e^y = x + \sqrt{x^2 + 1} \implies y = arcsinhx = \ln\left(x + \sqrt{x^2 + 1}\right)$$

4. For x > 1:

• Assume arccoshx = y.

$$\cosh y = x$$

Using the identities:

$$e^y = \cosh y + \sinh y$$
 and $\sinh y = \sqrt{\cosh^2 y - 1}$

We have:

$$e^y = x + \sqrt{x^2 - 1} \implies y = \operatorname{arccosh} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$

Thanks