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Inverse function

Theorem
A function f that is continuous and strictly monotonic from an
interval / C R to R is bijective on / to f(/). Its inverse function

f=1: f(I) — | exists, is continuous, and follows the monotonicity
of f.



Proof:

The function f is surjective from / to (/). Since f is strictly
monotonic, it is also injective, making f bijective on f(/). Thus,
f~1 exists and follows the monotonicity of . For example, if f is
strictly increasing, let y1,y» € f(/) such that y; < y». Then:

n#y = 1) # ()
and there exist x1, x> € /| such that:
) =x1. () =x.
If we assume x; > xo, then since f is strictly increasing, we get:
f(x1) > f(x2),
which contradicts y; < y». Hence:
x1<xp = () < ().

Thus, £~ is strictly increasing. Moreover, since f is continuous on
I, (/) is an interval, and 1 is continuous.



Exponential Functions

Definition: The exponential function is defined as f(x) = a*,
where a > 0 and a # 1. The exponential function, denoted by exp,
is the unique differentiable function on R that is equal to its
derivative and satisfies exp(0) = 1.

Properties:

1.

ook wN

exp(x) > 0,Vx € R.

exp(x + y) = exp(x) exp(y), Vx,y € R.

Using Euler's notation: exp(x) = e*, where e ~ 2.718.
The function exp is strictly increasing on R.

ef=e <= x=y, <& <= x<y.

exp is a bijection from R to R;.



Logarithmic Functions

Definition: The logarithmic function is given by f(x) = log, x,
where a2 > 0 and a # 1. This function is the inverse of the
exponential function. When a = e ~ 2.71828, the function
becomes f(x) = In x, called the natural logarithm.
The natural logarithm function is defined on (0, +0c) to R such
that:

Vx>0:x=¢€" < y=Inx.

Properties:

1.In1=0, Ine=1.

2. In(eX) =x, e"X=x, Vx>0
3. In is strictly increasing on (0, 400).

o

.In(xy)=Inx+Iny, In (}%) =—Iny.
5. In(x")=nlnx, VneN.



Figure: Source: BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours

et exercices corriﬁés d'AnaIise 1, Premiére année Licence Ml



Trigonometric Functions

The standard trigonometric functions include:

) nx 1
sinx, cosx, tanx = , CSCX = — ,
COS X sin x
COS X
secx = , Ccotx = — .
COS X sin x

- The variable x is generally expressed in radians (7 radians =
180°). - For real values of x, sin x and cos x lie in the range [—1, 1].



Key Properties of Trigonometric Functions

1. Pythagorean ldentities:

2 2 2

sin® x + cos x =1, 1+ tan® x = sec X, 1 + cot? x = csc? x.

2. Angle Addition and Subtraction Formulas:

sin(xty) = sinx cos y£cos xsiny, cos(xty) = cosx cos yFsin xsiny.

tan(x + y) tanx £ tany
n(x =
Y 1Ftanxtany

3. Sign Change Properties:

sin(—x) = —sinx, cos(—x) =cosx, tan(—x)= —tanx.



Inverse Trigonometric Functions: arcsin

Function arcsin
The function:

T .

f: [—7, f} — [-1,1], x> f(x) =sinx

2°2 ’
is continuous and strictly increasing on [—g, g] Therefore, f is
bijective, and its inverse function exists. It is continuous and
strictly increasing. We have:

(33 =t

and
f 1,1 — {—g, g} .y Yy)=arcsiny.
Thus, we get:
. . m T
arcsiny = x < sinx=y, —-1<y<1, —nggi.
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Inverse Trigonometric Functions: arccos

Function arccos
The function:

f:[0,7] = [-1,1], x> f(x) = cosx

is continuous and strictly decreasing on [0, 7]. Therefore, f is
bijective, and its inverse function exists. It is continuous and
strictly decreasing. We have:

F([0,7]) = [-1,1]

and
f1:[-1,1] = [0,7], y+ f1(y)=arccosy.
Thus, we get:
arccosy = x < cosx=y, —-1<y<1l 0<x<m.



Graphs of Restricted cos(x), arccos(x), and the First Bisector
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Inverse Trigonometric Functions: arctan

Function arctan
The function:

f: (—Z f) — R, x— f(x)=tanx = sinx

is continuous and strictly increasing on (—%, g) Therefore, f is
bijective, and its inverse function exists. It is continuous and
strictly increasing. We have:

((53)-s

—g, g) .y Yy)=arctany.

and
FFLR— (
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Graphs of Restricted tanix), arctan(x), and the First Bisector
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Inverse Trigonometric Functions: arccot

Function arccot
The function:

COs X

f: (0, — ( f = cotx =
(0,7) = (=00, +0), x> f(x) = cotx o

is continuous and strictly decreasing on (0, 7). Therefore, f is
bijective, and its inverse function exists. It is continuous and
strictly decreasing. We have:

f((0,7)) = (—o0, +00)



and
fl: (=00, +00) = (0,7), yw— F(y)=arccot y.
Thus, we get:

arccot y =x <= cotx=y, 0<x<m.



Properties of Inverse Trigonometric Functions

Properties:
1. Forall x € [-1,1]:

. v
arcsin X + arccos x = 5
2. If t ¢ [—g,g]:
sint = x <= arcsinx = t.

Otherwise:

sint = x <= t=arcsinx + 2km or t = (m — arcsin x) + 2kw, k € Z.

3. If t € [0, x]:
Cost = x <= arccosx = t.
Otherwise:
cost = x <= t = arccosx + 2km or t = —arccos x + 2knw, k € Z.



Hyperbolic Functions

Definition: The hyperbolic cosine function, cosh, and hyperbolic
sine function, sinh, are defined as:

eX 1 e X . eX — =X
coshx = —, sinhx= ———.
2 2
Properties:
1. cosh? x —sinh? x = 1.
2. dix cosh x = sinh x, d% sinh x = cosh x.
3. cosh(—x) = coshx, sinh(—x) = —sinhx.



Hyperbolic Functions and Their Inverses

Properties: cosh x is even, continuous, and strictly increasing on
[0, +00). Its inverse function cosh™ exists, is continuous, and
strictly increasing. We have:

F([0, +00)) = [1, +0)
and
f1:[1,400) = [0,400), y s F(y) = arccosh(y).
Thus, we get:

arccosh(y) = x <= coshx =y, x>0.
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Hyperbolic Sine Function

Definition: Hyperbolic Sine Function sinh:

e —e

2

—X

f:R—R, x+sinhx=

Properties: sinh x is odd, continuous, and strictly increasing on R.
Its inverse function sinh exists, is continuous, and strictly

increasing. We have:
f(R)=R

and
f1:R—=R, yr~ f1(y)=arcsinh(y).

Thus, we get:

arcsinh(y) = x <= sinhx=y, xeR.



Hyperbolic Tangent Function

Definition: Hyperbolic Tangent Function tanh:

f:R—(-1,1), X tanhx = & ¢
eX + e X

Properties: tanh x is odd, continuous, and strictly increasing on R.
Its inverse function tanh™! exists, is continuous, and strictly

increasing. We have:
F(R) = (~1,1)

and
f1:(-1,1) > R, yw f1(y)=arctanh(y).

Thus, we get:

arctanh(y) = x <= tanhx =y, |y|<L



Hyperbolic Cotangent Function

Definition: Hyperbolic Cotangent Function coth:

eX + e*X

f:(0,+00) = (1,+00), x> cothx =
eX _ e—X

Properties: coth x is odd, continuous, and strictly decreasing on
(0, 4+00). Its inverse function coth™! exists, is continuous, and
strictly decreasing. We have:

F((0, +-00)) = (1, +00)
and
f1 (1, 400) — (0,4+00), y > f(y) = argcoth(y).
Thus, we get:

argcoth(y) = x <= cothx=y, x>0.



Properties of Hyperbolic Functions

Properties
© cosh x + sinh x = e*:
@ coshx —sinhx = e
© cosh?x —sinh?x = 1:
Q 1 — tanh?x = sech®x:
© cosh(x + y) = cosh x cosh y + sinh x sinh y:
@ sinh(x + y) = sinh x cosh y + cosh x sinh y:



Expression in Logarithmic Form
The inverse functions of hyperbolic functions can be expressed
using the natural logarithm as follows:

1+ x
1—x

1
arctanhx = 5 In <

>, xe]l—-1,1]

x+1
x—1

1
arccothx = Eln < ), x €] —1,-1[U[1, +1]

arcsinhx = In (x+ 1 +x2>, x €R

arccoshx = In (x+ VX2 — 1), x>1



Proof:
1.

o Let x €] — 1, 1], and set arctanhx = y.

eyfe_y
tanhy =x — ——— =x
ey eV

l-e¥=x(1+e?) = eP(1+x)=1-x

5 14+ x 14+ x 1 14+ x
e = = 2y =1n = y==In
1—x 1—x 2 1—x




Proofs for Inverse Hyperbolic Functions

2. For x €] — 1, —1[U[1, +1[:

@ Assume arccothx = y.
ey +eY
ey —e Y

cothy = x =

1+e
re =x = l+e ¥ =x(1-e?)

1—e %
1
eV(14+x)=x—-1= ¥ = X
x—1
1+x 1 1+ x
2y =1In —> y = arccothx = —In
x—1 2 x—1



3. For x ¢ R:

@ Assume arcsinhx = y.
sinhy = x

@ Using the identities:

e’ =sinhy +coshy and coshy = y/sinh?y +1

o We have:

e =x+Vx2+1 = y = arcsinhx = In <X+ X2+1>




4. For x > 1:

@ Assume arccoshx = y.
coshy = x

@ Using the identities:

e’ =coshy +sinhy and sinhy =1/cosh?y —1

o We have:

e =x+Vx2-1 = y:arccoshx:ln(x+\/x2—1)
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