Chapter 03: Real Functions of a Real Variable

By Hocine RANDJI
randji.h@centre-univ-mila.dz

Abdelhafid Boussouf University Center- Mila- Algeria
Institute of Science and Technology
First Year Engineering
Module: Analysis 1
Semester 1

Academic Year: 2024/2025

Plan

- References
- Definitions
- Bounded functions
- Definitions of Monotonic Functions
- Introduction to Maxima and Minima
- Limits of a Function
- Continuity
- Derivatives of a function

بالعربية:

- بابا حامد، بن حبيب، التحيل 1 تذكير بالدروس و تمارين محلولة عدد 300 . . (الفصلين الثالث و الرابع) . ترجمة الحفيظ مقران، ديوان الطبوعات الحجامعية (الفصلين الثالث و الرابع) . In English:
 - Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968), (Chapters 2 and 4)
 - Robert C. Wrede, Murray R. Spiegel, Schaum's Outlines: Advanced Calculus, (2011), (Chapter 3 and 4).
 - Terence Tao, Analysis 1 (3rd edition), Springer (2016).

En français:

- BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI Mathématiques et Informatique, U.S.T.O 2020-2021 (Chapitres 4 et 5).
- Benzine BENZINE, Analyse réelle cours et exercices corriges, première année maths et informatique (2016), (Chapitres 3 et 4).

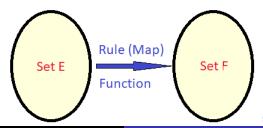
Definitions

Definition:

• A real function of a real variable is a mapping f from a set $E \subset \mathbb{R}$ to a set $F \subset \mathbb{R}$, written as:

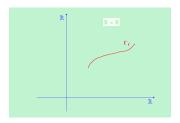
$$f: E \to F$$
, $x \mapsto f(x)$.

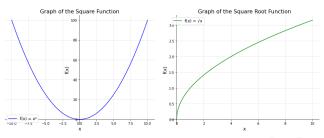
- Here, x is called the real variable, and f(x) is called the image of x under f.
- The domain of definition of f is the set of values $x \in E$ for which $f(x) \in F$, denoted D_f .
- The set of all functions from E to F is denoted as F(E, F).



The graph of f is the subset Γ_f of the Cartesian product $\mathbb{R} \times \mathbb{R}$ defined as:

$$\Gamma_f = \{(x, f(x)) \mid x \in E\}.$$





Definition: (Parity of a Function)

Let f be a function from \mathbb{R} to \mathbb{R} .

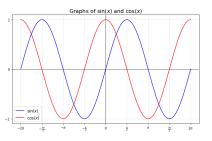
- f is called even if $\forall x \in D_f$, f(-x) = f(x), meaning the graph of f is symmetric with respect to the y-axis.
- f is called odd if $\forall x \in D_f$, f(-x) = -f(x), meaning the graph of f is symmetric with respect to the origin.

Definition: (Periodicity of a Function) A function f is said to be periodic if there exists a strictly positive real number T such that:

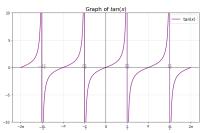
$$\forall x \in D_f, \ f(x+T) = f(x).$$

Examples:

- For $f(x) = \sin x$ or $f(x) = \cos x$, the period is $T = 2\pi$.



- For $f(x) = \tan x$, the period is $T = \pi$.



- For $f(x) = x - \lfloor x \rfloor$, the period is T = 1.

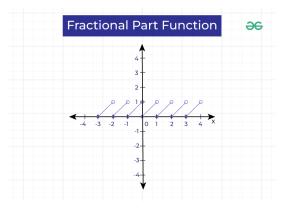


Figure: Source: https://www.geeksforgeeks.org/fractional-part-function/

- For
$$f(x) = \cos\left(\frac{5x}{2}\right)$$
, the period is $T = \frac{4\pi}{5}$.

Remarks:

- 1. If *f* is even or odd, it suffices to study it over half its domain.
- 2. There exist functions that are neither even nor odd.
- 3. If f is periodic with period T, it suffices to study it over a single period.

Bounded Functions

1. A function f(x) is said to be **bounded above** in an interval (or set) if there exists a constant M such that:

$$f(x) \leq M$$
 for all x in the interval.

Here, M is called an **upper bound** for f(x).

2. Similarly, f(x) is **bounded below** if there exists a constant m such that:

$$f(x) \ge m$$
 for all x in the interval.

In this case, m is called a **lower bound**.

3. If both conditions are satisfied—i.e., there exist constants *m* and *M* such that:

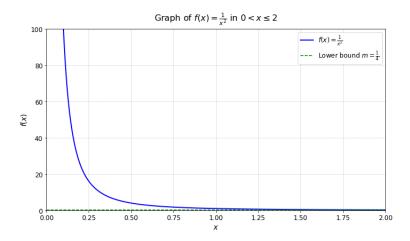
$$m \le f(x) \le M$$
 for all x in the interval,

then f(x) is called a **bounded function**. To denote that f(x) is bounded, we can write:

$$|f(x)| \le P, \quad P > 0.$$

Examples

- 1) For $f(x) = \cos(x)$ in the interval $-\infty < x < \infty$:
 - The function is bounded since $-1 \le f(x) \le 1$ for all x.
 - M = 1 is an **upper bound**, and m = -1 is a **lower bound**.
- 2) For $f(x) = x^3$ in the interval $-2 \le x \le 2$:
 - The function is bounded because $-8 \le f(x) \le 8$ in this interval.
 - M = 8 is an **upper bound**, and m = -8 is a **lower bound**.
- 3) For $f(x) = \frac{1}{x^2}$ in the interval $0 < x \le 2$:
 - The function is **not bounded above**, as $f(x) \to \infty$ as $x \to 0^+$.
 - However, it is bounded below with $f(x) \ge \frac{1}{4}$.



Definition of Monotonic Functions

Monotonically Increasing:

• A function f(x) is monotonically increasing on an interval if, for any x_1, x_2 such that $x_1 < x_2$, we have:

$$f(x_1) \leq f(x_2).$$

• If $f(x_1) < f(x_2)$ strictly for all $x_1 < x_2$, then f(x) is strictly increasing.

Monotonically Decreasing:

• A function f(x) is monotonically decreasing on an interval if, for any x_1, x_2 such that $x_1 < x_2$, we have:

$$f(x_1) \geq f(x_2)$$
.

• If $f(x_1) > f(x_2)$ strictly for all $x_1 < x_2$, then f(x) is strictly decreasing.

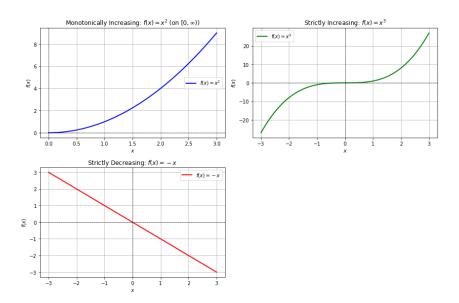
Examples:

Monotonically Increasing:

- The function $f(x) = x^2$ is monotonically increasing on $[0, \infty)$.
- The function $f(x) = x^3$ is strictly increasing on \mathbb{R} .

Monotonically Decreasing:

• The function f(x) = -x is strictly decreasing on \mathbb{R} .



Introduction to Maxima and Minima

- The study of maxima and minima, or extreme values of functions, was a key motivation for the development of calculus in the 17th century.
- Extreme values are important in both mathematical theory and real-world applications.
- They are classified into:
 - Relative extrema (local maxima and minima).
 - Absolute extrema (global maxima and minima).

Relative Extrema

Definition:

 A function f(x) has a relative maximum at c if there exists an interval (a, b) containing c such that:

$$f(x) < f(c)$$
 for all $x \neq c$ in (a, b) .

• Similarly, f(x) has a **relative minimum** at c if:

$$f(x) > f(c)$$
 for all $x \neq c$ in (a, b) .

Key Points:

- Relative extrema are the "high points" (maximum) or "low points" (minimum) within a local neighborhood.
- Functions may have multiple relative extrema or none at all.

Absolute Extrema

Definition:

• A function f(x) has an absolute maximum at c if:

$$f(x) \le f(c)$$
 for all x in the domain of f.

• A function f(x) has an absolute minimum at c if:

$$f(x) \ge f(c)$$
 for all x in the domain of f.

Key Points:

- Absolute extrema consider the entire domain of the function.
- Strictly increasing or decreasing functions may have absolute extrema at the endpoints of a closed interval.
- Absolute extrema are not always unique, as in the case of constant functions.

Examples and Observations

Examples:

- Relative extrema:
 - The highest point on a specific hill is a **relative maximum**.
 - The lowest point in a valley is a **relative minimum**.
- Absolute extrema:
 - The tallest hill overall is the absolute maximum.
 - The deepest valley is the **absolute minimum**.

Special Cases:

- Strictly increasing or decreasing functions have no relative extrema but may have absolute extrema on closed intervals.
- Constant functions have infinite absolute extrema, as all points are maxima and minima.

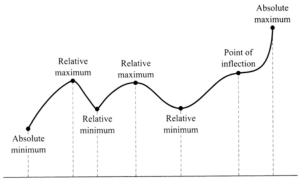


Figure 3.3

Figure: Source:Schaum's Outlines: Advanced Calculus By Robert C. Wrede, Murray R. Spiegel \cdot 2011

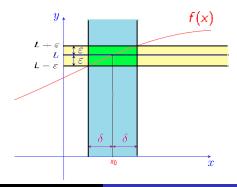
Limits of a Function

Definition: Let f be a real-valued function defined on a set $E \subset \mathbb{R}$. We say that f(x) tends toward a limit L as x approaches x_0 if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$\forall x \in E, \ 0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$

This is written as:

$$\lim_{x\to x_0} f(x) = L.$$



Theorems on limits:

1. If $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then:

$$\lim_{x\to x_0}[f(x)+g(x)]=L+M.$$

2. If $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, then:

$$\lim_{x\to x_0} [f(x)\cdot g(x)] = L\cdot M.$$

3. If $\lim_{x\to x_0} f(x) = L$, $\lim_{x\to x_0} g(x) = M$, and $M\neq 0$, then:

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{L}{M}.$$

Remark: If f(x) is continuous at x_0 , then:

$$\lim_{x\to x_0} f(x) = f(x_0).$$

Definition: A function f(x) is said to have a limit L as x approaches infinity if, for every $\epsilon > 0$, there exists N > 0 such that:

$$\forall x > N, |f(x) - L| < \epsilon.$$

This is written as:

$$\lim_{x\to\infty}f(x)=L.$$

Theorem If f admits a limit at the point x_0 , then this limit is unique.

Proof

Suppose, for contradiction, that f admits two different limits, l_1 and l_2 ($l_1 \neq l_2$). When x tends to x_0 , we have:

$$\lim_{x \to x_0} f(x) = I_1 \iff$$

$$\forall \epsilon > 0, \exists \alpha_1 > 0, \forall x \in I, |x - x_0| < \alpha_1 \implies |f(x) - I_1| < \frac{\epsilon}{2}$$

$$\lim_{x \to x_0} f(x) = I_2 \iff$$

$$\forall \epsilon > 0, \exists \alpha_2 > 0, \forall x \in I, |x - x_0| < \alpha_2 \implies |f(x) - I_2| < \frac{\epsilon}{2}$$

Let $\epsilon > 0$, then:

$$|I_1 - I_2| = |(I_1 - f(x)) + (f(x) - I_2)|$$

For $\alpha = \min(\alpha_1, \alpha_2)$, we have:

$$|I_1 - I_2| \le |f(x) - I_1| + |f(x) - I_2| < \epsilon$$

Thus, for all $\epsilon > 0$ (no matter how small), it follows that $l_1 = l_2$.

One-Sided Limits

Definition:

- f has a left-hand limit I_I as $x \to x_0^-$:

$$\lim_{x \to x_0^-} f(x) = I_I \iff$$

$$\forall \epsilon > 0, \exists \alpha > 0, \forall x \in I, x_0 - \alpha < x < x_0 \implies |f(x) - I_I| < \epsilon$$

- f has a right-hand limit I_r as $x \to x_0^+$:

$$\lim_{x \to x_0^+} f(x) = I_r \iff$$

$$\forall \epsilon > 0, \exists \alpha > 0, \forall x \in I, x_0 < x < x_0 + \alpha \implies |f(x) - I_r| < \epsilon$$

Remarks

① If f has a limit I as $x \to x_0$, then:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = I$$

② If f has a left-hand limit I_l and a right-hand limit I_r at x_0 , and $I_l = I_r$, then:

$$\lim_{x \to x_0} f(x) = I_I = I_r$$

If $l_l \neq l_r$, then f does not have a limit as $x \to x_0$.

Infinity as a Limit

$$\lim_{x \to x_0} f(x) = +\infty \iff$$

$$\forall A > 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies f(x) > A$$

$$\lim_{x \to x_0} f(x) = -\infty \iff$$

$$\forall A < 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies f(x) < A$$

$$\forall A < 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \implies f(x) < A$$

Limits at Infinity

$$\lim_{x \to +\infty} f(x) = I \iff \forall \epsilon > 0, \exists \alpha > 0, \forall x > \alpha \implies |f(x) - I| < \epsilon$$

$$\lim_{x \to -\infty} f(x) = I \iff \forall \epsilon > 0, \exists \alpha < 0, \forall x < \alpha \implies |f(x) - I| < \epsilon$$

Continuity

Definition: A function f(x) is said to be continuous at a point $x_0 \in D_f$ if:

$$\lim_{x\to x_0} f(x) = f(x_0).$$

If f(x) is continuous at every point in D_f , it is said to be continuous on D_f .

Continuity

A function f(x) is said to be **continuous** at a point $x = x_0$ if the following conditions hold:

- **1** The limit $\lim_{x\to x_0} f(x)$ exists.
- 2 The value $f(x_0)$ exists (i.e., f is defined at x_0).
- 3 The limit matches the function's value:

$$\lim_{x\to x_0} f(x) = f(x_0).$$

These conditions ensure the function behaves smoothly at x_0 , with no jumps, gaps, or breaks.

Alternative Definition

A function f(x) is continuous at x_0 if:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } |f(x) - f(x_0)| < \epsilon \text{ whenever } |x - x_0| < \delta.$$

This means that we can make f(x) arbitrarily close to $f(x_0)$ by taking x sufficiently close to x_0 .

Intuitive Understanding of Continuity

- If f(x) is continuous at x_0 , the graph of f(x) near x_0 can be drawn without lifting the pencil from the paper.
- If there is a gap or jump in the graph at x₀, the function is not continuous there.

In simple terms, f(x) is continuous at x_0 if:

$$\lim_{x\to x_0} f(x) = f(x_0).$$

Example 1: A Discontinuous Function

Let:

$$f(x) = \begin{cases} x^2 & \text{if } x \neq 2, \\ 0 & \text{if } x = 2. \end{cases}$$

- For $x \neq 2$, $f(x) = x^2$, so $\lim_{x \to 2} f(x) = 4$.
- At x = 2, f(2) = 0.
- Since $\lim_{x\to 2} f(x) \neq f(2)$, f(x) is not continuous at x=2.

Example 2: A Continuous Function

Let $f(x) = x^2$ for all x:

- The limit $\lim_{x\to 2} f(x) = 4$.
- The value of the function at x = 2 is f(2) = 4.
- Since $\lim_{x\to 2} f(x) = f(2)$, f(x) is **continuous** at x=2.

Points of Discontinuity

Discontinuities are points where f(x) fails to be continuous.

These can occur if:

- f(x) is undefined at the point (a gap),
- f(x) jumps to a different value,
- The left-hand and right-hand limits do not match.

For example: - In Example 1, f(x) is discontinuous at x = 2 because the limit and function value differ.

Property:

The sum, product, and quotient (where the denominator is nonzero) of continuous functions are continuous.

Examples:

- 1. The function $f(x) = x^2 + 3x + 2$ is continuous on \mathbb{R} .
- 2. The function $g(x) = \frac{1}{x}$ is continuous on $\mathbb{R} \setminus \{0\}$.

Theorems on Continuity

Theorem 1:

If f(x) and g(x) are continuous at $x = x_0$, then the following functions are also continuous at $x = x_0$:

$$f(x) + g(x)$$
, $f(x) - g(x)$, $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}$ provided $g(x_0) \neq 0$.

Theorem 2:

The following functions are continuous over every finite interval:

- Polynomials.
- \bullet sin x and cos x.
- Exponential functions a^{\times} , where a > 0.

Theorem 3: If f(x) is continuous at x_0 , and g(y) is continuous at $y_0 = f(x_0)$, then the composite function g(f(x)) is continuous at x_0 .

Theorem 4: If f(x) is continuous over a closed interval, then it is bounded on that interval.

Theorem 5: If f(x) is continuous at x_0 and $f(x_0) > 0$ (or $f(x_0) < 0$), then there exists an interval around x_0 where f(x) > 0 (or f(x) < 0).

Theorem 6: If f(x) is continuous and strictly monotonic (strictly increasing or decreasing) on an interval, then its inverse $f^{-1}(x)$ exists, is single-valued, and is also continuous.

Theorem 7: (Intermediate Value Theorem) If f(x) is continuous on a closed interval [a,b] and f(a)=A, f(b)=B, then for any C between A and B, there exists at least one $c \in [a,b]$ such that:

$$f(c) = C$$
.

Theorem 8: (Zero Value Theorem) If f(x) is continuous on [a, b] and $f(a) \cdot f(b) < 0$, then there exists at least one $c \in (a, b)$ such that:

$$f(c)=0.$$

Theorem 9: (Extreme Value Theorem) If f(x) is continuous on a closed interval [a, b], then it attains both its maximum value M and minimum value m at some points in the interval:

$$M = \max_{x \in [a,b]} f(x), \quad m = \min_{x \in [a,b]} f(x).$$

Theorem 10: If f(x) is continuous on [a, b], then its least upper bound (l.u.b.) and greatest lower bound (g.l.b.) are attained within the interval.

Piecewise Continuity

A function f(x) is piecewise continuous on (a, b) if the interval can be divided into a finite number of subintervals where f(x) is continuous, and f(x) has finite left-hand and right-hand limits at any points of discontinuity.

Uniform Continuity

Definition: A function f(x) is uniformly continuous on an interval if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that:

$$|f(x_1) - f(x_2)| < \epsilon$$
 whenever $|x_1 - x_2| < \delta$,

where x_1, x_2 are any two points in the interval.

Theorem: If f(x) is continuous on a closed interval, it is also uniformly continuous on that interval.

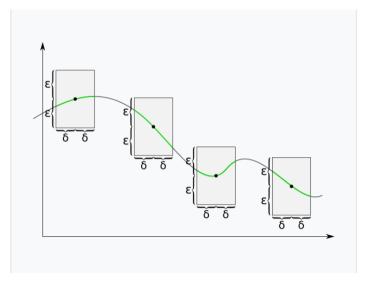


Figure: Source:https://en.wikipedia.org

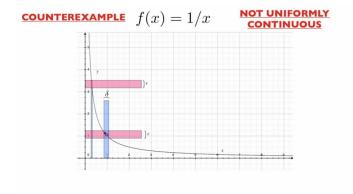


Figure:

Source: https://math.stackexchange.com/questions/2283008/uniform-continuity-of-function

Derivatives of a Function

Definition: Let f(x) be a real-valued function defined on an open interval containing x_0 . The derivative of f at x_0 , denoted $f'(x_0)$, is defined as:

$$f'(x_0) = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h},$$

provided the limit exists. If $f'(x_0)$ exists, f(x) is said to be differentiable at x_0 .

Higher-Order Derivatives: If f'(x) is differentiable, the derivative of f'(x) is called the second derivative of f(x), denoted f''(x). Similarly, higher-order derivatives are defined recursively.

Examples of Differentiation

1. For $f(x) = x^2$, the derivative is:

$$f'(x)=2x.$$

2. For $g(x) = \sin x$, the derivative is:

$$g'(x) = \cos x$$
.

3. For $h(x) = \ln x$, the derivative is:

$$h'(x)=\frac{1}{x}.$$

4. For $k(x) = e^x$, the derivative is:

$$k'(x) = e^x$$
.

Definition of a Derivative

Let f(x) be defined at a point x_0 in (a, b). The derivative of f(x) at $x = x_0$ is defined as:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

if this limit exists.

Note: The derivative can also be defined in other equivalent ways.

Key Property: If f(x) is differentiable at $x = x_0$, it must be continuous there.

Caution: Continuity does not necessarily imply differentiability.

Right and Left-Hand Derivatives

Right-Hand Derivative:

$$f'_{+}(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h},$$

where h approaches 0 from positive values.

Left-Hand Derivative:

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h},$$

where h approaches 0 from negative values.

Condition for Differentiability:

$$f(x)$$
 is differentiable at $x_0 \iff f'_+(x_0) = f'_-(x_0)$.

Differentiability in an Interval

A function f(x) is said to be **differentiable** in an interval if it has a derivative at every point in the interval.

Closed Interval Case: For f(x) defined in [a, b], f(x) is differentiable if:

- $f'(x_0)$ exists for all x_0 where $a < x_0 < b$.
- The right-hand derivative exists at x = a and the left-hand derivative exists at x = b.

Continuous Derivatives: If f(x) has a continuous derivative, it is said to be **continuously differentiable**.

Sectional Differentiability

A function f(x) is sectionally differentiable in [a, b] if its derivative f'(x) is piecewise continuous in the interval.

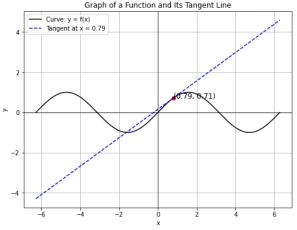
Example: Sectional continuity is commonly observed in functions defined piecewise over different subintervals of [a, b].

Equation of the Tangent Line

The equation of the tangent line to the curve y = f(x) at $x = x_0$ is:

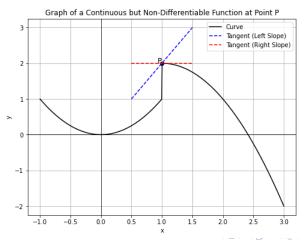
$$y - f(x_0) = f'(x_0)(x - x_0).$$

This equation represents the linear approximation of f(x) near x_0 .



Continuity and Differentiability

A function can be continuous but not differentiable at a point. This occurs at sharp corners or cusps in the graph. At such points, multiple tangent lines may exist. For instance, point P in the figure has two tangent lines with slopes $f_1'(x_0)$ and $f_2'(x_0)$.



Differentials

Let $\Delta x = dx$ be a small increment in x. The corresponding change in y = f(x) is:

$$\Delta y = f(x + \Delta x) - f(x).$$

For differentiable functions, this change can be approximated as:

$$\Delta y = f'(x)\Delta x + \varepsilon \Delta x,$$

where $\varepsilon \to 0$ as $\Delta x \to 0$. The term dy = f'(x)dx is the differential of y, representing the principal part of Δy .

Rules of Differentiation

For differentiable functions f(x) and g(x), the following rules apply:

- Sum Rule: $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$,
- Product Rule: $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$,
- Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$,
- Chain Rule: If y = f(u) and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.

Thanks