
Chapitre 3 vectors and matrices

1

1. Introduction

Matrices are the basic elements of the MATLAB environment. A matrix is a two-dimensional array

consisting of m rows and n columns. Special cases are column vectors (n = 1) and row vectors (m

= 1).

In this chapter we will illustrate how to apply different operations on matrices. MATLAB supports

two types of operations, known as matrix operations and array operations. Matrix operations will

be discussed first.

2. Matrix generation

Matrices are fundamental to MATLAB. Matrices can be generated in several ways.

2.1 Entering a vector

A vector is a special case of a matrix. An array of dimension 1×n is called a row vector, whereas

an array of dimension m×1 is called a column vector. The elements of vectors in MATLAB are

enclosed by square brackets and are separated by spaces or by commas. For example, to enter a

row vector, v, type

>> v = [1 4 7 10 13]

v =

1 4 7 10 13

Column vectors are created in a similar way, however, semicolon (;) must separate the components

of a column vector,

>> w = [1;4;7;10;13]

w =

1

4

7

10

13

On the other hand, a row vector is converted to a column vector using the transpose operator

denoted by an apostrophe (’).

>> w = v’

w =

1

4

7

10

13

Thus, v(1) is the first element of vector v, v(2) its second element, and so forth.

Chapitre 3 vectors and matrices

2

Furthermore, to access blocks of elements, we use MATLAB’s colon notation (:). For example, to

access the first three elements of v, we write,

>> v(1:3)

ans =

1 4 7

Or, all elements from the third through the last elements,

>> v(3,end)

ans =

7 10 13

Where end signifies the last element in the vector. If v is a vector, writing

>> v(:)

Produces a column vector, whereas writing

>> v(1:end)

Produces a row vector.

2.2 Entering a matrix

A matrix is an array of numbers. To type a matrix into MATLAB we must

• begin with a square bracket, [

• separate elements in a row with spaces or commas (,)

• a semicolon (;) to separate rows

• end the matrix with another square bracket,]

Here is a typical example. To enter a matrix A, such as,

We type,

>> A = [1 2 3; 4 5 6; 7 8 9]

MATLAB then displays the 3 × 3 matrix as follows,

A =

1 2 3

4 5 6

7 8 9

Chapitre 3 vectors and matrices

3

Once we have entered the matrix, it is automatically stored and remembered in the Workspace. We

can refer to it simply as matrix A. We can then view a particular element in a matrix by specifying

its location. We write,

>> A(2,1)

ans =

4

A(2,1) is an element located in the second row and first column. Its value is 4.

2.3 Matrix indexing

The element of row i and column j of the matrix A is denoted by A(i,j). Thus, A(i,j) in MATLAB

refers to the element Aij of matrix A. The first index is the row number and the second index is the

column number. For example, A(1,3) is an element of first row and third column. Here, A(1,3)=3.

Correcting any entry is easy through indexing. Here we substitute A(3,3)=9 by A(3,3)=0. The

result is

>> A(3,3) = 0

A =

1 2 3

4 5 6

7 8 0

Single elements of a matrix are accessed as A(i,j), where i ≥ 1 and j ≥ 1. Zero or negative subscripts

are not supported in MATLAB.

2.4 Colon operator

The colon operator (:), will prove very useful and understanding how it works is the key to efficient

and convenient usage of MATLAB. It occurs in several different forms.

Often we must deal with matrices or vectors that are too large to enter one element at a time. For

example, suppose we want to enter a vector x consisting of points (0, 0.1, 0.2, 0.3, · · ·, 5). We can

use the command

>> x = 0:0.1:5;

The row vector has 51 elements.

2.5 Linear spacing

On the other hand, there is a command to generate linearly spaced vectors: linspace. It is similar to

the colon operator (:), but gives direct control over the number of points.

For example,

Chapitre 3 vectors and matrices

4

y = linspace(a,b); Generates a row vector y of 100 points linearly spaced between and including a

and b.

y = linspace(a,b,n)

generates a row vector y of n points linearly spaced between and including a and b. This is useful

when we want to divide an interval into a number of subintervals of the same length.

For example,

>> theta = linspace(0 , 2*pi , 101)

divides the interval [0, 2π] into 100 equal subintervals, then creating a vector of 101 elements.

2.6 Colon operator in a matrix

The colon operator can also be used to pick out a certain row or column. For example, the statement

A(m:n,k:l) specifies rows m to n and column k to l. Subscript expressions refer to portions of a

matrix. For example,

>> A(2,:)

ans =

4 5 6

is the second row elements of A.

The colon operator can also be used to extract a sub-matrix from a matrix A.

>> A(:,2:3)

ans =

2 3

5 6

8 0

A(:,2:3) is a sub-matrix with the last two columns of A.

A row or a column of a matrix can be deleted by setting it to a null vector, [].

>> A(:,2)=[]

ans =

1 3

4 6

7 0

2.7 Creating a sub-matrix

To extract a submatrix B consisting of rows 2 and 3 and columns 1 and 2 of the matrix A, do the

following

>> B = A([2 3],[1 2])

B =

Chapitre 3 vectors and matrices

5

4 5

7 8

To interchange rows 1 and 2 of A, use the vector of row indices together with the colon operator.

>> C = A([2 1 3],:)

C =

4 5 6

1 2 3

7 8 0

It is important to note that the colon operator (:) stands for all columns or all rows. To create a

vector version of matrix A, do the following

>> A(:)

ans =

1

2

3

4

5

6

7

8

0

The submatrix comprising the intersection of rows p to q and columns r to s is denoted by

A(p:q,r:s).

As a special case, a colon (:) as the row or column specifier covers all entries in that row or column;

thus

• A(:,j) is the jth column of A

• A(i,:) is the ith row

• A(end,:) picks out the last row of A.

The keyword 'end’, used in A(end,:), denotes the last index in the specified dimension. Here are

some examples.

>> A

A =

1 2 3

4 5 6

7 8 9

>> A(2:3,2:3)

Chapitre 3 vectors and matrices

6

ans =

5 6

8 9

>> A(end:-1:1,end)

ans =

9

6

3

24

>> A([1 3],[2 3])

ans =

2 3

8 9

2.8 Deleting row or column

To delete a row or column of a matrix, use the empty vector operator, [].

>> A(3,:) = []

A =

1 2 3

4 5 6

Third row of matrix A is now deleted. To restore the third row, we use a technique for creating a

matrix

>> A = [A(1,:);A(2,:);[7 8 0]]

A =

1 2 3

4 5 6

7 8 0

Matrix A is now restored to its original form.

2.9 Dimension

To determine the dimensions of a matrix or vector, we use the command size. For example,

>> size(A)

ans =

3 3

means 3 rows and 3 columns. Or more explicitly with,

>> [m,n]=size(A)

2.10 Continuation

If it is not possible to type the entire input on the same line, use consecutive periods, called an

ellipsis . . ., to signal continuation, then continue the input on the next line.

Chapitre 3 vectors and matrices

7

B = [4/5 7.23*tan(x) sqrt(6); ...

1/x^2 0 3/(x*log(x)); ...

x-7 sqrt(3) x*sin(x)];

Note that blank spaces around +, −, = signs are optional, but they improve readability.

2.11 Transposing a matrix

The transpose operation is denoted by an apostrophe or a single quote (’). It flips a matrix about its

main diagonal and it turns a row vector into a column vector. Thus,

>> A’

ans =

1 4 7

2 5 8

3 6 0

By using linear algebra notation, the transpose of m × n real matrix A is the n × m matrix that

results from interchanging the rows and columns of A. The transpose matrix is denoted At.

2.12 Concatenating matrices

Matrices can be made up of sub-matrices. Here is an example. First, let’s recall our previous matrix

A =

1 2 3

4 5 6

7 8 9

The new matrix B will be,

>> B = [A 10*A; -A [1 0 0; 0 1 0; 0 0 1]]

B =

1 2 3 10 20 30

4 5 6 40 50 60

7 8 9 70 80 90

-1 -2 -3 1 0 0

-4 -5 -6 0 1 0

-7 -8 -9 0 0 1

2.13 Matrix generators

MATLAB provides functions that generates elementary matrices. The matrix of zeros, the matrix

of ones, and the identity matrix are returned by the functions zeros, ones, and eye, respectively.

Chapitre 3 vectors and matrices

8

Table 1: Elementary matrices

The commands help elmat or doc elmat give a complete list of elementary matrices and matrix

manipulations,

 Examples:

1. >> b=ones (3,1)

b =

1

1

1

Equivalently, we can define b as >> b=[1;1;1]

2. >> eye(3)

ans =

1 0 0

0 1 0

0 0 1

3. >> c=zeros(2,3)

c =

0 0 0

0 0 0

In addition, it is important to remember that the three elementary operations of addition (+),

subtraction (−), and multiplication (∗) apply also to matrices whenever the dimensions are

compatible.

Two other important matrix generation functions are rand and randn, which generate matrices of

(pseudo-)random numbers using the same syntax as eye.

In addition, matrices can be constructed in a block form. With C defined by C = [1 2; 3 4], we may

create a matrix D as follows

>> D = [C zeros(2); ones(2) eye(2)]

D =

1 2 0 0

3 4 0 0

1 1 1 0

1 1 0 1

Chapitre 3 vectors and matrices

9

2.14 Special matrices

MATLAB provides a number of special matrices. These matrices have interesting properties that

make them useful for constructing examples and for testing algorithms.

Table 2: Special matrices

3. Array operations

MATLAB has two different types of arithmetic operations: matrix arithmetic operations and array

arithmetic operations.

3.1. Matrix arithmetic operations

MATLAB allows arithmetic operations: +, −, ∗, and ˆ to be carried out on matrices. Thus,

A+B or B+A is valid if A and B are of the same size

A*B is valid if A’s number of column equals B’s number of rows

A^2 is valid if A is square and equals A*A

α*A or A*α multiplies each element of A by α

3.2 Array arithmetic operations

On the other hand, array arithmetic operations or array operations for short, are done element-by-

element. The period character, (.), distinguishes the array operations from the matrix operations.

However, since the matrix and array operations are the same for addition (+) and subtraction (−),

the character pairs (.+) and (.−) are not used. The list of array operators is shown below in Table 3.

If A and B are two matrices of the same size with elements A = [aij] and B = [bij], then the

command

Table 3: Array operators

Chapitre 3 vectors and matrices

10

>> C = A.*B

produces another matrix C of the same size with elements cij = aij bij . For example, using the same

3 × 3 matrices,

we have,

>> C = A.*B

C =

10 40 90

160 250 360

490 640 810

To raise a scalar to a power, we use for example the command 10^2. If we want the operation to be

applied to each element of a matrix, we use .^2. For example, if we want to produce a new matrix

whose elements are the square of the elements of the matrix A, we enter

>> A.^2

ans =

1 4 9

16 25 36

49 64 81

The relations below summarize the above operations. To simplify, let’s consider two vectors U and

V with elements U = [ui] and V = [vj].

Table 3: Summary of matrix and array operations

3.2 Solving linear equations

Chapitre 3 vectors and matrices

11

One of the problems encountered most frequently in scientific computation is the solution of

systems of linear equations. With matrix notation, a system of simultaneous linear equations is

written

Ax = b

Where there are as many equations as unknown. A is a given square matrix of order n, b is a given

column vector of n components, and x is an unknown column vector of n components.

In linear algebra we learn that the solution to Ax = b can be written as x = A−1 b, where A−1 is the

inverse of A.

For example, consider the following system of linear equations

With matrix notation, a system of simultaneous linear equations is written Ax = b

This equation can be solved for x using linear algebra. The result is x = A−1b.

1. The first way is to use the matrix inverse, inv.

>> A = [1 2 3; 4 5 6; 7 8 0];

>> b = [1; 1; 1];

>> x = inv(A)*b

x =

-1.0000

1.0000

-0.0000

2. The second one is to use the backslash (\)operator. The numerical algorithm behind this operator

is computationally efficient. This is a numerically reliable way of solving system of linear

equations by using a well-known process of Gaussian elimination.

>> A = [1 2 3; 4 5 6; 7 8 0];

>> b = [1; 1; 1];

>> x = A\b

x =

-1.0000

1.0000

-0.0000

3.2.1 Matrix inverse

Chapitre 3 vectors and matrices

12

Let’s consider the same matrix A.

Calculating the inverse of A manually. A−1 gives as a final result:

In MATLAB, however, it becomes as simple as the following commands:

>> A = [1 2 3; 4 5 6; 7 8 0];

>> inv(A)

ans =

-1.7778 0.8889 -0.1111

1.5556 -0.7778 0.2222

-0.1111 0.2222 -0.1111

which is similar to:

and the determinant of A is

>> det(A)

ans =

27

3.2.2 Matrix functions

MATLAB provides many matrix functions for various matrix/vector manipulations.

Table 3: Matrix functions

