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1.  Introduction 

Matrices are the basic elements of the MATLAB environment. A matrix is a two-dimensional array 

consisting of m rows and n columns. Special cases are column vectors (n = 1) and row vectors (m 

= 1). 

In this chapter we will illustrate how to apply different operations on matrices. MATLAB supports 

two types of operations, known as matrix operations and array operations. Matrix operations will 

be discussed first. 

2. Matrix generation 

Matrices are fundamental to MATLAB. Matrices can be generated in several ways. 

2.1 Entering a vector 

A vector is a special case of a matrix. An array of dimension 1×n  is called a row vector, whereas 

an array of dimension  m×1 is called a column vector. The elements of vectors in MATLAB are 

enclosed by square brackets and are separated by spaces or by commas. For example, to enter a 

row vector, v, type 

>> v = [1 4 7 10 13] 

v = 

1 4 7 10 13 

Column vectors are created in a similar way, however, semicolon (;) must separate the components 

of a column vector, 

>> w = [1;4;7;10;13] 

w = 

1 

4 

7 

10 

13 

On the other hand, a row vector is converted to a column vector using the transpose operator 

denoted by an apostrophe (’). 

>> w = v’ 

w = 

1 

4 

7 

10 

13 

Thus, v(1) is the first element of vector v, v(2) its second element, and so forth. 
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Furthermore, to access blocks of elements, we use MATLAB’s colon notation (:). For example, to 

access the first three elements of v, we write, 

>> v(1:3) 

ans = 

1 4 7 

Or, all elements from the third through the last elements, 

>> v(3,end) 

ans = 

7 10 13 

Where end signifies the last element in the vector. If v is a vector, writing 

>> v(:) 

Produces a column vector, whereas writing 

>> v(1:end) 

Produces a row vector. 

2.2 Entering a matrix 

A matrix is an array of numbers. To type a matrix into MATLAB we must 

• begin with a square bracket, [ 

• separate elements in a row with spaces or commas (,) 

• a semicolon (;) to separate rows 

• end the matrix with another square bracket,] 

Here is a typical example. To enter a matrix A, such as, 

 

We type, 

>> A = [1 2 3; 4 5 6; 7 8 9] 

MATLAB then displays the 3 × 3 matrix as follows, 

A = 

1 2 3 

4 5 6 

7 8 9 
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Once we have entered the matrix, it is automatically stored and remembered in the Workspace. We 

can refer to it simply as matrix A. We can then view a particular element in a matrix by specifying 

its location. We write, 

>> A(2,1) 

ans = 

4 

A(2,1) is an element located in the second row and first column. Its value is 4. 

2.3 Matrix indexing 

The element of row i and column j of the matrix A is denoted by A(i,j). Thus, A(i,j) in MATLAB 

refers to the element Aij of matrix A. The first index is the row number and the second index is the 

column number. For example, A(1,3) is an element of first row and third column. Here, A(1,3)=3. 

Correcting any entry is easy through indexing. Here we substitute A(3,3)=9 by A(3,3)=0. The 

result is 

>> A(3,3) = 0 

A = 

1 2 3 

4 5 6 

7 8 0 

Single elements of a matrix are accessed as A(i,j), where i ≥ 1 and j ≥ 1. Zero or negative subscripts 

are not supported in MATLAB. 

2.4 Colon operator 

The colon operator (:), will prove very useful and understanding how it works is the key to efficient 

and convenient usage of MATLAB. It occurs in several different forms. 

Often we must deal with matrices or vectors that are too large to enter one element at a time. For 

example, suppose we want to enter a vector x consisting of points (0, 0.1, 0.2, 0.3, · · ·, 5). We can 

use the command 

>> x = 0:0.1:5; 

The row vector has 51 elements. 

2.5 Linear spacing 

On the other hand, there is a command to generate linearly spaced vectors: linspace. It is similar to 

the colon operator (:), but gives direct control over the number of points.  

For example, 
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y = linspace(a,b); Generates a row vector y of 100 points linearly spaced between and including a 

and b. 

y = linspace(a,b,n) 

generates a row vector y of n points linearly spaced between and including a and b. This is useful 

when we want to divide an interval into a number of subintervals of the same length. 

For example, 

>> theta = linspace(0 , 2*pi , 101) 

divides the interval [0, 2π] into 100 equal subintervals, then creating a vector of 101 elements. 

2.6 Colon operator in a matrix 

The colon operator can also be used to pick out a certain row or column. For example, the statement 

A(m:n,k:l) specifies rows m to n and column k to l. Subscript expressions refer to portions of a 

matrix. For example, 

>> A(2,:) 

ans = 

4 5 6 

is the second row elements of A. 

The colon operator can also be used to extract a sub-matrix from a matrix A. 

>> A(:,2:3) 

ans = 

2 3 

5 6 

8 0 

A(:,2:3) is a sub-matrix with the last two columns of A. 

A row or a column of a matrix can be deleted by setting it to a null vector, [ ]. 

>> A(:,2)=[] 

ans = 

1 3 

4 6 

7 0 

2.7 Creating a sub-matrix 

To extract a submatrix B consisting of rows 2 and 3 and columns 1 and 2 of the matrix A, do the 

following 

>> B = A([2 3],[1 2]) 

B = 
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4 5 

7 8 

To interchange rows 1 and 2 of A, use the vector of row indices together with the colon operator. 

>> C = A([2 1 3],:) 

C = 

4 5 6 

1 2 3 

7 8 0 

It is important to note that the colon operator (:) stands for all columns or all rows. To create a 

vector version of matrix A, do the following 

>> A(:) 

ans = 

1 

2 

3 

4 

5 

6 

7 

8 

0 

The submatrix comprising the intersection of rows p to q and columns r to s is denoted by 

A(p:q,r:s). 

As a special case, a colon (:) as the row or column specifier covers all entries in that row or column; 

thus 

• A(:,j) is the jth column of A 

• A(i,:) is the ith row 

• A(end,:) picks out the last row of A. 

The keyword 'end’, used in A(end,:), denotes the last index in the specified dimension. Here are 

some examples. 

>> A 

A = 

1 2 3 

4 5 6 

7 8 9 

>> A(2:3,2:3) 
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ans = 

5 6 

8 9 

>> A(end:-1:1,end) 

ans = 

9 

6 

3 

24 

>> A([1 3],[2 3]) 

ans = 

2 3 

8 9 

2.8 Deleting row or column 

To delete a row or column of a matrix, use the empty vector operator, [ ]. 

>> A(3,:) = [] 

A = 

1 2 3 

4 5 6 

Third row of matrix A is now deleted. To restore the third row, we use a technique for creating a 

matrix 

>> A = [A(1,:);A(2,:);[7 8 0]] 

A = 

1 2 3 

4 5 6 

7 8 0 

Matrix A is now restored to its original form. 

2.9 Dimension 

To determine the dimensions of a matrix or vector, we use the command size. For example, 

>> size(A) 

ans = 

3 3 

means 3 rows and 3 columns. Or more explicitly with, 

>> [m,n]=size(A) 

2.10 Continuation 

If it is not possible to type the entire input on the same line, use consecutive periods, called an 

ellipsis . . ., to signal continuation, then continue the input on the next line. 
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B = [4/5 7.23*tan(x) sqrt(6); ... 

1/x^2 0 3/(x*log(x)); ... 

x-7 sqrt(3) x*sin(x)]; 

Note that blank spaces around +, −, = signs are optional, but they improve readability. 

2.11 Transposing a matrix 

The transpose operation is denoted by an apostrophe or a single quote (’). It flips a matrix about its 

main diagonal and it turns a row vector into a column vector. Thus, 

>> A’ 

ans = 

1 4 7 

2 5 8 

3 6 0 

By using linear algebra notation, the transpose of m × n real matrix A is the n × m matrix that 

results from interchanging the rows and columns of A. The transpose matrix is denoted At. 

2.12 Concatenating matrices 

Matrices can be made up of sub-matrices. Here is an example. First, let’s recall our previous matrix  

A = 

1 2 3 

4 5 6 

7 8 9 

The new matrix B will be, 

>> B = [A 10*A; -A [1 0 0; 0 1 0; 0 0 1]] 

B = 

1 2 3 10 20 30 

4 5 6 40 50 60 

7 8 9 70 80 90 

-1 -2 -3 1 0 0 

-4 -5 -6 0 1 0 

-7 -8 -9 0 0 1 

2.13 Matrix generators 

MATLAB provides functions that generates elementary matrices. The matrix of zeros, the matrix 

of ones, and the identity matrix are returned by the functions zeros, ones, and eye, respectively. 
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Table 1: Elementary matrices 

The commands help elmat or doc elmat give a complete list of elementary matrices and matrix 

manipulations, 

 Examples: 

1. >> b=ones (3,1) 

b = 

1 

1 

1 

Equivalently, we can define b as >> b=[1;1;1] 

2. >> eye(3) 

ans = 

1 0 0 

0 1 0 

0 0 1 

3. >> c=zeros(2,3) 

c = 

0 0 0 

0 0 0 

In addition, it is important to remember that the three elementary operations of addition (+), 

subtraction (−), and multiplication (∗) apply also to matrices whenever the dimensions are 

compatible.  

Two other important matrix generation functions are rand and randn, which generate matrices of 

(pseudo-)random numbers using the same syntax as eye. 

In addition, matrices can be constructed in a block form. With C defined by C = [1  2; 3 4], we may 

create a matrix D as follows 

>> D = [C zeros(2); ones(2) eye(2)] 

D = 

1 2 0 0 

3 4 0 0 

1 1 1 0 

1 1 0 1 
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2.14 Special matrices 

MATLAB provides a number of special matrices. These matrices have interesting properties that 

make them useful for constructing examples and for testing algorithms. 

 

Table 2: Special matrices 

3. Array operations 

MATLAB has two different types of arithmetic operations: matrix arithmetic operations and array 

arithmetic operations.  

3.1. Matrix arithmetic operations 

MATLAB allows arithmetic operations: +, −, ∗, and ˆ to be carried out on matrices. Thus, 

A+B or B+A is valid if A and B are of the same size 

A*B is valid if A’s number of column equals B’s number of rows 

A^2 is valid if A is square and equals A*A 

α*A or A*α multiplies each element of A by α 

3.2 Array arithmetic operations 

On the other hand, array arithmetic operations or array operations for short, are done element-by-

element. The period character, (.), distinguishes the array operations from the matrix operations. 

However, since the matrix and array operations are the same for addition (+) and subtraction (−), 

the character pairs (.+) and (.−) are not used. The list of array operators is shown below in Table 3. 

If A and B are two matrices of the same size with elements A = [aij ] and B = [bij ], then the 

command 

 

Table 3: Array operators 
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>> C = A.*B 

produces another matrix C of the same size with elements cij = aij bij . For example, using the same 

3 × 3 matrices, 

 

we have, 

>> C = A.*B 

C = 

10 40 90 

160 250 360 

490 640 810 

To raise a scalar to a power, we use for example the command 10^2. If we want the operation to be 

applied to each element of a matrix, we use .^2. For example, if we want to produce a new matrix 

whose elements are the square of the elements of the matrix A, we enter 

>> A.^2 

ans = 

1 4 9 

16 25 36 

49 64 81 

The relations below summarize the above operations. To simplify, let’s consider two vectors U and 

V with elements U = [ui ] and V = [vj]. 

 

 

Table 3: Summary of matrix and array operations 

3.2 Solving linear equations 
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One of the problems encountered most frequently in scientific computation is the solution of 

systems of linear equations. With matrix notation, a system of simultaneous linear equations is 

written 

Ax = b  

Where there are as many equations as unknown. A is a given square matrix of order n, b is a given 

column vector of n components, and x is an unknown column vector of n components. 

In linear algebra we learn that the solution to Ax = b can be written as x = A−1 b, where A−1 is the 

inverse of A. 

For example, consider the following system of linear equations 

 

With matrix notation, a system of simultaneous linear equations is written Ax = b  

This equation can be solved for x using linear algebra. The result is x = A−1b. 

1. The first way is to use the matrix inverse, inv. 

>> A = [1 2 3; 4 5 6; 7 8 0]; 

>> b = [1; 1; 1]; 

>> x = inv(A)*b 

x = 

-1.0000 

1.0000 

-0.0000 

2. The second one is to use the backslash (\)operator. The numerical algorithm behind this operator 

is computationally efficient. This is a numerically reliable way of solving system of linear 

equations by using a well-known process of Gaussian elimination. 

>> A = [1 2 3; 4 5 6; 7 8 0]; 

>> b = [1; 1; 1]; 

>> x = A\b 

x = 

-1.0000 

1.0000 

-0.0000 

3.2.1 Matrix inverse 
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Let’s consider the same matrix A. 

 

Calculating the inverse of A manually. A−1 gives as a final result: 

 

In MATLAB, however, it becomes as simple as the following commands: 

>> A = [1 2 3; 4 5 6; 7 8 0]; 

>> inv(A) 

ans = 

-1.7778 0.8889 -0.1111 

1.5556 -0.7778 0.2222 

-0.1111 0.2222 -0.1111 

which is similar to: 

 

and the determinant of A is 

>> det(A) 

ans = 

27 

3.2.2 Matrix functions 

MATLAB provides many matrix functions for various matrix/vector manipulations.  

 

Table 3: Matrix functions 

 

 


