
Chapitre 2 Fichiers script et Types de données et de variables

1

1. Introduction

The Matlab commands can be executed in the Command Window. The problem is that the

commands entered in the Command Window cannot be saved and executed again for several times.

Therefore, a different way of executing repeatedly commands with MATLAB is:

1. To create a file with a list of commands,

2. Save the file, and

3. Run the file.

If needed, corrections or changes can be made to the commands in the file. The files that are used

for this purpose are called script files or scripts for short.

2 M-File Scripts

A script file is an external file that contains a sequence of MATLAB statements. Script files have

a filename extension .m and are often called M-files. M-files can be scripts that simply execute a

series of MATLAB statements, or they can be functions that can accept arguments and can produce

one or more outputs.

2.1 Examples

1. Consider the system of equations:

x + 2y + 3z = 1

3x + 3y + 4z = 1

2x + 3y + 3z = 2

Find the solution x to the system of equations.

Solution:

• Use the MATLAB editor to create a file: File → New → M-file.

• Enter the following statements in the file:

A = [1 2 3; 3 3 4; 2 3 3];

b = [1; 1; 2];

x = A\b

• Save the file, for example, example1.m.

• Run the file, in the command line, by typing:

>> example1

x =

-0.5000

1.5000

Chapitre 2 Fichiers script et Types de données et de variables

2

-0.5000

When execution completes, the variables (A, b, and x) remain in the workspace. To see a listing of

them, enter whos at the command prompt.

Note: The MATLAB editor is both a text editor specialized for creating M-files and a graphical

MATLAB debugger. The MATLAB editor has numerous menus for tasks such as saving, viewing,

and debugging. Because it performs some simple checks and also uses color to differentiate

between various elements of codes, this text editor is recommended as the tool of choice for writing

and editing M-files.

There is another way to open the editor:

>> edit

or

>> edit filename.m % to open filename.m.

2. Plot the following cosine functions, y1 = 2 cos(x), y2 = cos(x), and y3 = 0.5 ∗ cos(x), in theinterval

0 ≤ x ≤ 2π. This example has been presented in previous Chapter. Here we put the commands in a

file.

• Create a file, say example2.m, which contains the following commands:

x = 0 : pi/100 : 2*pi ;

y1 = 2*cos(x);

y2 = cos(x);

y3 = 0.5*cos(x);

plot(x,y1,’--’,x,y2,’-’,x,y3,’:’)

xlabel(’0 \leq x \leq 2\pi’)

ylabel(’Cosine functions’)

legend(’2*cos(x)’,’cos(x)’,’0.5*cos(x)’)

title(’Typical example of multiple plots’)

axis([0 2*pi -3 3])

• Run the file by typing example2 in the Command Window.

2.2 Script side-effects

All variables created in a script file are added to the workspace. This may have undesirable effects,

because:

• Variables already existing in the workspace may be overwritten.

• The execution of the script can be affected by the state variables in the workspace.

As a result, because scripts have some undesirable side-effects, it is better to code any complicated

applications using rather function M-file.

3. Inputs and outputs

Chapitre 2 Fichiers script et Types de données et de variables

3

3.1 Input to a script file

When a script file is executed, the variables that are used in the calculations within the file must

have assigned values. The assignment of a value to a variable can be done in three ways.

1. The variable is defined in the script file.

2. The variable is defined in the command prompt.

3. The variable is entered when the script is executed.

In the third case, the variable is defined in the script file. When the file is executed, the user is

prompted to assign a value to the variable in the command prompt. This is done by using the input

command. Here is an example.

This script file calculates the average of points scored in three games. The point from each game

are assigned to a variable by using the ‘input’ command.

game1 = input(’Enter the points scored in the first game ’);

game2 = input(’Enter the points scored in the second game ’);

game3 = input(’Enter the points scored in the third game ’);

average = (game1+game2+game3)/3

When the script file (saved as example3) the command prompt is :

>> example3

>> Enter the points scored in the first game 15

>> Enter the points scored in the second game 23

>> Enter the points scored in the third game 10

average =

16

The input command can also be used to assign string to a variable.

3.2. Output commands

MATLAB automatically generates a display when commands are executed. In addition to this

automatic display, MATLAB has several commands that can be used to generate displays or

outputs.

Two commands that are frequently used to generate output are: disp and fprintf.

The main differences between these two commands can be summarized as follows

Chapitre 2 Fichiers script et Types de données et de variables

4

Table : disp and fprintf commands

4. MATLAB Data Types

4.1 Define data types in MATLAB

In MATLAB we do not require any type of declaration statement, when it gets any new

variable name it creates the variable and allocates appropriate memory space to it but if the

variable name already exists it will replace the original content with new content and allocate it to

new storage space when required.

Syntax: variable name = a value (or an expression)

Example:

>> Geeks = 7;

Output:

4.1. Data Types in MATLAB

In MATLAB, data can be stored in different types, numeric, text, complex number, etc.

To store these data MATLAB has different classes which have various characteristics. MATLAB

provides a total of 16 fundamental data types.

 Logical Type

Logic types are true and false values that are represented with the logical value 0 and 1.

Any numerical value (non-complex) can be converted into a logical representation.

Syntax: G = logical (x)

Example:

MATLAB code for random matrix generation

>>A = randi(5,5)

It will generate random matrix of size 5x5

Chapitre 2 Fichiers script et Types de données et de variables

5

>>B = A < 9

 The result is a logical matrix.

 Each value in B represents a logical 1 (true), or logical 0 (false) state to indicate whether the

corresponding element of A fulfills the condition A < 9.

 For example, if A(1,1) is 13, so B(1,1) is logical 0 (false).

 However, if A(1,2) is 2, so B(1,2) is logical 1 (true).

Output:

 Char and String type

In MATLAB character and string array provide storage for text type data. The strings are

character array compared with the sequence of numbers called a numeric array.

Syntax: s = ‘String’

Example:

>>str = "Welcome to GeeksforGeeks, ""Welcome!"" and lets start coding."

>>fprintf(str);

Output:

 Numeric Type

Integer and floating-point data are in the following descriptions.

Chapitre 2 Fichiers script et Types de données et de variables

6

Data

Type
Short Description Features

double Double-precision arrays

 Default numeric data type (class) in MATLAB

 Stored as 64-bit (8-byte) floating-point value

 Range:

 Negative numbers = -1.79769 x 10308 to -

2.22507 x 10-308

 Positive numbers = 2.22507 x 10-308 to

1.79769 x 10308

single Single-precision arrays

 Stored as 4-byte (32-bit) floating-point value

 Range-

 Negative numbers = -1.79769 x 10308 to -

2.22507 x 10-308

 Positive numbers = 2.22507 x 10-308 to

1.79769 x 10308

int8
8-bit signed integer

arrays

 Stored as 1-byte (8-bit) signed integers

 Range is -27 to 27-1

int16
16-bit signed integer

arrays

 Stored as 2-byte (16-bit) signed integers

 Range -215 to 215 -1

int32
32-bit signed integer

arrays

 Stored as 4-byte (32-bit) signed integers

 Range is -231 to 231-1

int64
64-bit signed integer

arrays

 Stored as 8-byte (64-bit) signed integers

 Range is -263 to 263-1

uint8
8-bit unsigned integer

arrays

 Stored as 1-byte (8-bit) unsigned integers

 Range is 0 to 28-1

unit16
16-bit unsigned integer

arrays

 Stored as 2-byte (16-bit) unsigned integers

 Range is 0 to 216 -1

Chapitre 2 Fichiers script et Types de données et de variables

7

 Table type

The table contains rows and column variables. Each variable can be of different data

types and different sizes, but each variable needs to have the same number of rows. Range of

functions are used to access data to create, edit, and read the table data.

Syntax: T = table(ColumnName1,ColumnName2);

Example:

T = table(Name,QuestionAttempted,CodingScore);

data = {'Atul Sisodiya',22,100};

Tnew = [Tnew;data];

Output:

Table array

2x3

 Name QuestionAttempted CodingScore

 Atul Sisodiya 22 100

 Cell

A cell array is a MATLAB data type that contains indexed data containers called cells.

Cells can contain any type of data, commonly contain character vectors of different lengths,

numbers, an array of numbers of any size. Sets of cells are enclosed in () and access to the cells

is done by using {} which is to create, edit or delete any cell functions.

Syntax: c = { }

Example:

C = {1, 2, 3}

Output:

uint32
32-bit unsigned integer

arrays

 Stored as 4-byte (32-bit) unsigned integers

 Range is 0 to 232-1

uint64
64-bit unsigned integer

arrays

 Stored as 8-byte (64-bit) unsigned integers

 Range is 0 to 264-1

Chapitre 2 Fichiers script et Types de données et de variables

8

 Structure

In structure data containers are used to group related data and their type, which are called

fields. Fields may contain any type of data. In structures, Data is accessed using the dot notation.

Syntax: structname.fieldName

Example:

>>geek(1).name = ("Atul Sisodiya");

>>geek(1).coding = 100;

>>geek

Output:

 Function Handles

Function Handles is majorly used in MATLAB is to pass a function (numerical or char) to

another function. Variables that are used to invoke function indirectly can be named as a function

handle.

To create a function handle ‘@’ operator is used.

Example: To create a function handle to evaluate x^2 + y^2, a function used is:

Output:

4.2. Identification of MATLAB Data Types

Features of MATLAB provides a collection of variables for developers to identify and understand

the data types of values and variables to ensure correct and efficient programming. Additionally,

MATLAB offers several built-in functions for data type identification and conversion.

The "class" function is commonly used to determine the data type of a variable. It returns a string

representing the class of the variable, such as "double", "char", "logical", or "cell". This

information helps in verifying the expected data type and performing appropriate operations.

https://www.theknowledgeacademy.com/blog/features-of-matlab/

Chapitre 2 Fichiers script et Types de données et de variables

9

	4. MATLAB Data Types
	4.1. Data Types in MATLAB
	 Logical Type
	 Char and String type
	 Numeric Type
	Tnew = [Tnew;data];
	 Cell
	 Structure

	>>geek
	 Function Handles

	4.2. Identification of MATLAB Data Types

