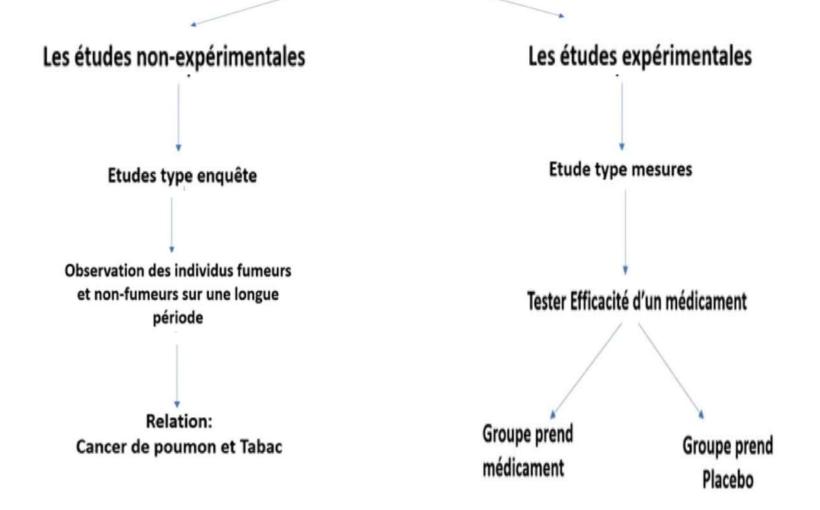

Centre universitaire Abdelhafid Boussouf Mila Institut des Sciences de la Nature et la Vie

Module : Bio-statistique

CHAPITRE 1: Rappels sur les statistiques descriptives 2024/2025



BioStatistiques

Traitement des données mesurées ou observées des vivants

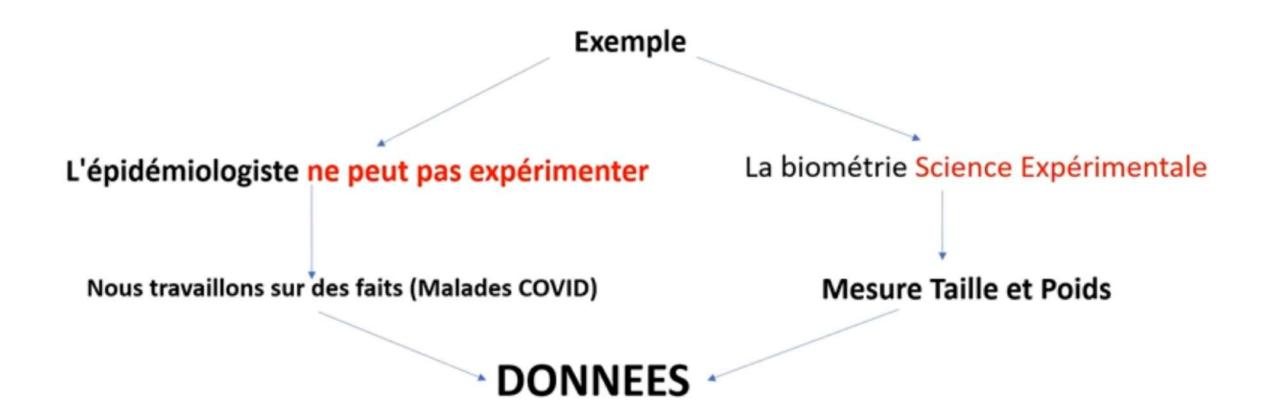
ETUDES BIOLOGIQUES

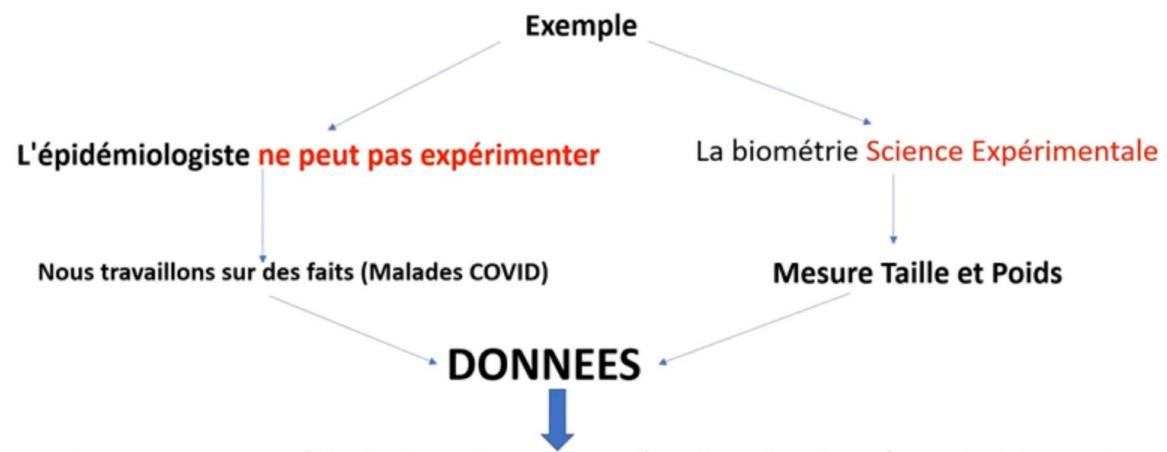
Exemple

Exemple

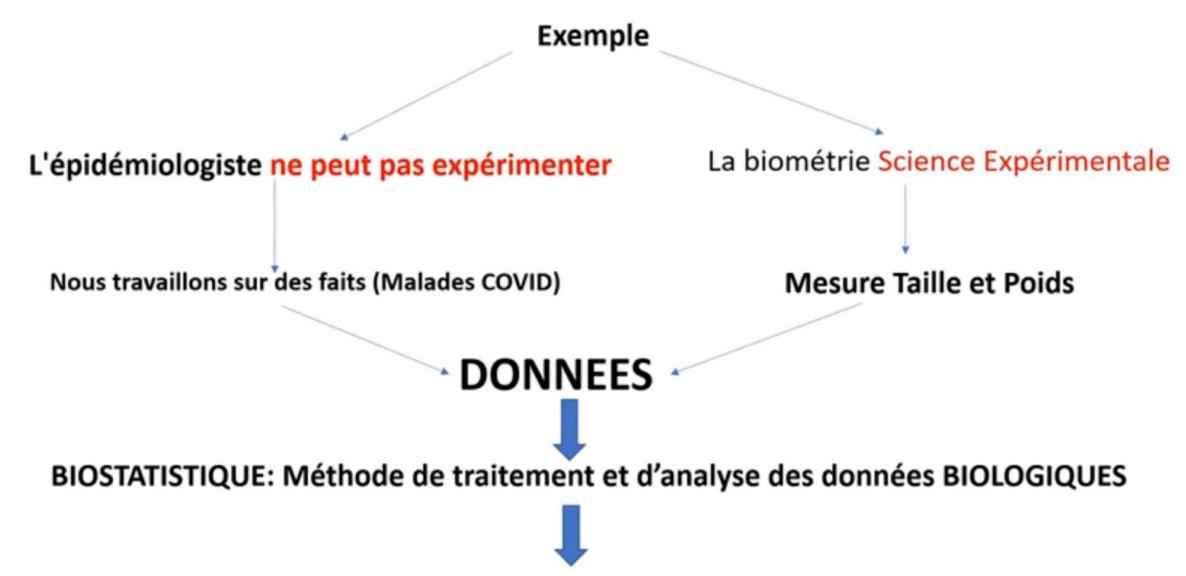
L'épidémiologiste ne peut pas expérimenter

La biométrie Science Expérimentale

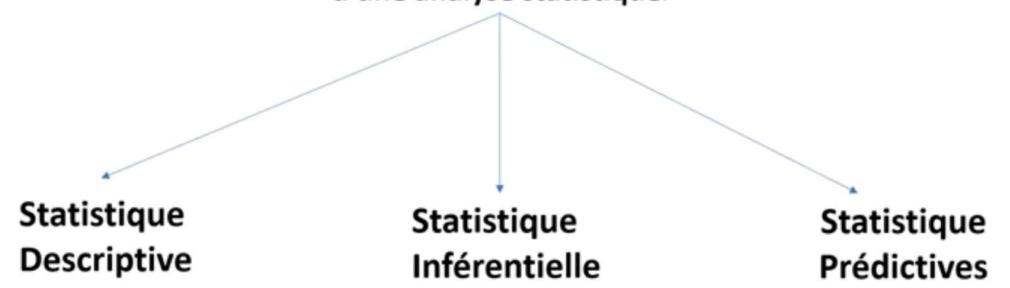

Exemple


L'épidémiologiste ne peut pas expérimenter

Nous travaillons sur des faits (Malades COVID)


La biométrie Science Expérimentale

Mesure Taille et Poids


BIOSTATISTIQUE: Méthode de traitement et d'analyse des données BIOLOGIQUES

Outils d'aide à la décision

Modélisation statistiques

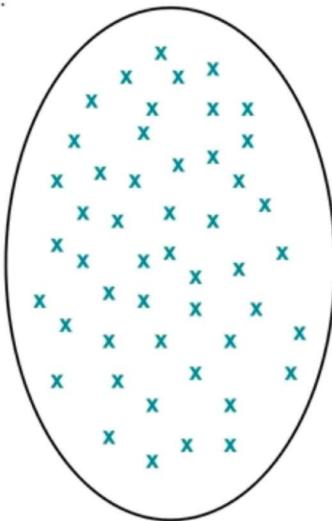
Toute étude, qu'elle soit (non expérimentale ou expérimentale) doit être suivie d'une analyse statistique.

Prèsenter et décrire les données mesurées

Prèsenter et décrire les données mesurées

Tirer des conclusions à partir des fonctions statistiques

Prèsenter et décrire les données mesurées


Tirer des conclusions à partir des fonctions statistiques

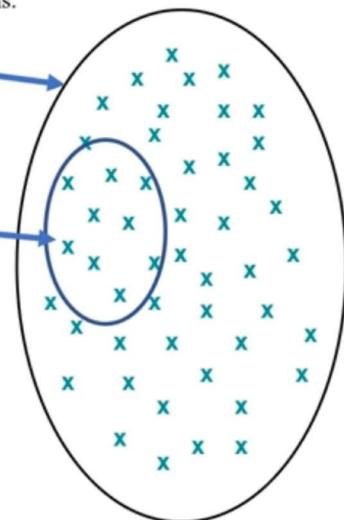
Faire de "bonnes" prévisions.

Population statistique:

Une population statistique est l'ensemble sur lequel on effectue des observations.

Exemple: Etudiants USTHB (11000 étudiants)

Population statistique:


Une population statistique est l'ensemble sur lequel on effectue des observations.

Exemple: Etudiants USTHB (11000 étudiants)

Echantillon:

Une partie de population statistique

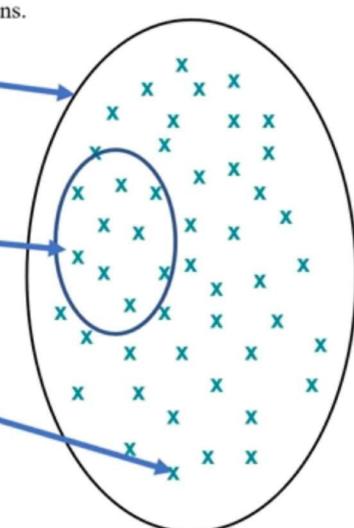
Exemple: Etudiants L2 FSB Taille finie N

Population statistique:

Une population statistique est l'ensemble sur lequel on effectue des observations.

Exemple: Etudiants USTHB (11000 étudiants)

Echantillon:


Une partie de population statistique

Exemple: Etudiants L2 FSB Taille finie N

Individu (ou unités statistiques) :

Les individus sont les éléments de la population statistique étudiée.

Exemple: Un étudiant

STATISTIQUES DESCRIPTIVES

La collecte, l'organisation et le traitement des données sur un échantillon

Démarche à Suivre

Collecte des données

Sondage ou Expérience

Tableaux

T(Individus x Variables)

Méthodes statistiques

- Tableaux
- Graphes
- Paramètres

Variables Individus	Taille cm	Poids kg	Couleur Yeux	Groupe Sanguin	Taille Vêtement	Nbre Appel	Température °C	Sexe
1001	1,68	64	Mar	0+	L	0	37,2	М
1002	1,76	82	Noir	B+	XL	3	37,5	F
	1,88	95	Noir	AB+	XXL	2	38,4	F
	1,64	88	Nois	A-	L	5	37,6	М
1200	1,59	86	Bleu	0-	М	1	37,5	F

Variables Individus	Taille cm	Poids kg	Couleur Yeux	Groupe Sanguin	Taille Vêtement	Nbre Appel	Température °C	Sexe
1001	1,68	64	Mar	0+	L	0	37,2	М
1002	1,76	82	Noir	B+	XL	3	37,5	F
	1,88	95	Noir	AB+	XXL	2	38,4	F
	1,64	88	Nois	A-	L	5	37,6	М
			Tableau	(Individ	us ; Variak	les)		
1200	1,59	86	Bleu	0-	М	1	37,5	F

Variables Individus	Taille cm	Poids kg	Couleur Yeux	Groupe Sanguin	Taille Vêtement	Nbre Appel	Température °C	Sexe
1001	1,68	64	Mar	0+	L	0	37,2	М
1002	1,76	82	Noir	B+	XL	3	37,5	F
	1,88	95	Noir	AB+	XXL	2	38,4	F
	1,64	88	Nois	A-	L	5	37,6	М
			Tableau	(Individ	us ; Variak	les)		
1200	1,59	86	Bleu	0-	М	1	37,5	F

Modalités Les résultats d'une variable

Variables Individus	Taille cm	Poids kg	Couleur Yeux	Groupe Sanguin	Taille Vêtement	Nbre Appel	Température °C	Sexe
1001	1,68	64	Mar	0+	L	0	37,2	М
1002	1,76	82	Noir	B+	XL	3	37,5	F
	1,88	95	Noir	AB+	XXL	2	38,4	F
	1,64	88	Nois	A-	L	5	37,6	М
			Tableau	(Individ	us ; Variak	les)		
1200	1,59	86	Bleu	0-	М	1	37,5	F

Modalités Les résultats d'une variable

$$GS = \{A^-; B^+; O^+, , , , \}$$

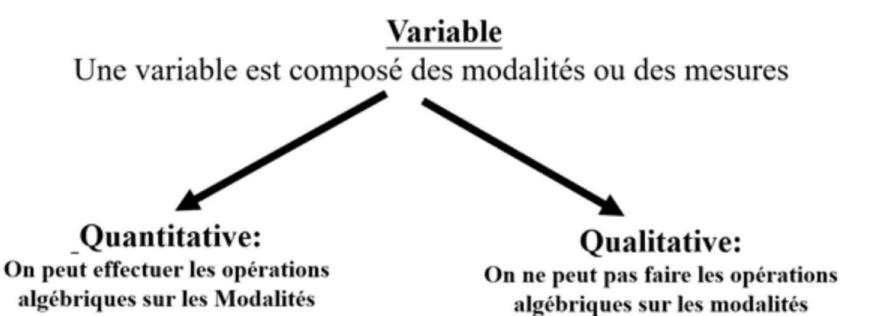
Variables Individus	Taille cm	Poids kg	Couleur Yeux	Groupe Sanguin	Taille Vêtement	Nbre Appel	Température °C	Sexe
1001	1,68	64	Mar	0+	L	0	37,2	М
1002	1,76	82	Noir	B+	XL	3	37,5	F
	1,88	95	Noir	AB+	XXL	2	38,4	F
	1,64	88	Nois	A-	L	5	37,6	М
			Tableau	(Individ	us ; Variak	les)		
1200	1,59	86	Bleu	0-	М	1	37,5	F

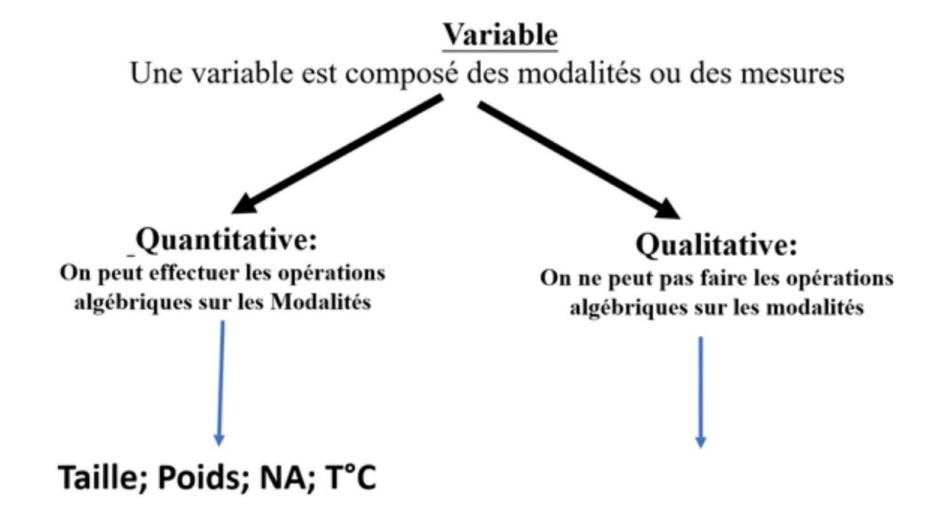
Modalités Les résultats d'une variable

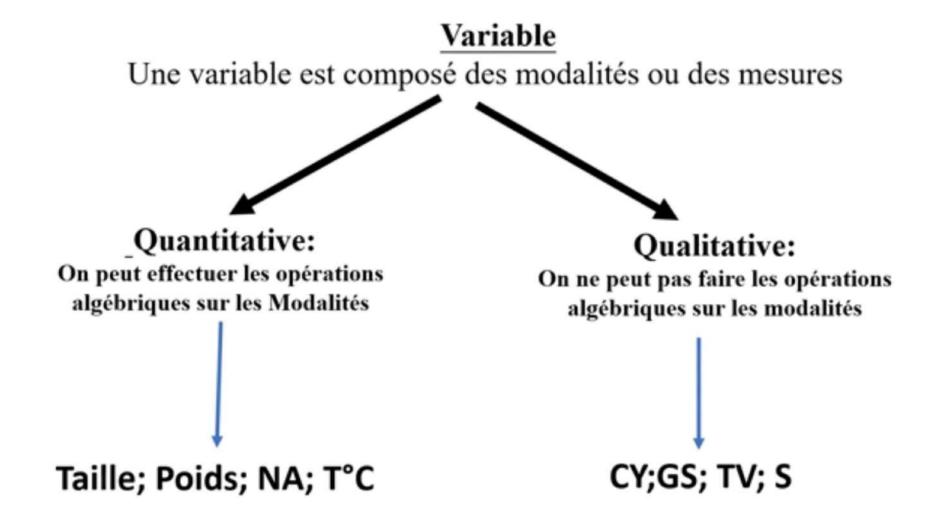
$$GS = \{A^-; B^+; O^+,,,,\}$$

$$N.A = \{0; 1; 2; ; k\}$$

Variable


Une variable est composé des modalités ou des mesures


Variable


Une variable est composé des modalités ou des mesures

On peut effectuer les opérations algébriques sur les Modalités

Variable qualitative:

Une variable est qualitative si ses valeurs, ou **modalités**, s'expriment de façon littérale ou par un codage GS; Sexe; CY ; TV

Variable qualitative:

Une variable est qualitative si ses valeurs, ou **modalités**, s'expriment de façon littérale ou par un codage GS; Sexe; CY; TV

Nominale:

L'ordre des modalités n'est pas important Exemple: GS; SEXE

Variable qualitative:

Une variable est qualitative si ses valeurs, ou **modalités**, s'expriment de façon littérale ou par un codage GS; Sexe; CY; TV

....

Nominale:

L'ordre des modalités n'est pas important Exemple: GS; SEXE

Variable qualitative ordinale :

L'ordre des modalités est important Taille des vêtement

Exemple: S;M;L; XL et XXL

VARIABLES QUALITATIVES

Variable qualitative:

Une variable est qualitative si ses valeurs, ou modalités, s'expriment de façon littérale ou

par un codage GS; Sexe; CY; TV

Nominale:

L'ordre des modalités n'est pas important Exemple: GS; SEXE

Variable qualitative ordinale :

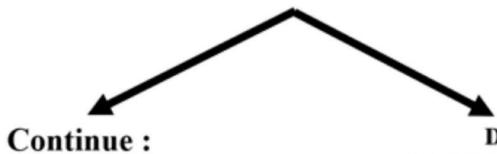
L'ordre des modalités est important Taille des vêtement

Exemple: S;M;L; XL et XXL

Binaire (dichotomique) Présence/Absence:

Présence d'un facteur de risque pour une pathologie

VARIABLES QUANTITATIVES


Variable quantitative:

Une variable est quantitative si ses valeurs, sont des mesures ou des intensités Exemple: Taille (cm); Poids (kg); NF

VARIABLES QUANTITATIVES

Variable quantitative:

Une variable est quantitative si ses valeurs, sont des mesures ou des intensités Exemple: Taille (cm); Poids (kg); NF

Modalité des observations réelles.

Taille: 1,685; 17214 ect,,

Discrète :

Modalité sont des entiers Exemple: Nombre d'Appel téléphonique 0,1,2....,k

Modalités	n_i : Effectif
0+	15
A-	25
AB+	18
0-	47
B+	34
B-	16
A+	45
Somme	N=200

Modalités	n_i : Effectif
0+	15
A-	25
AB+	18
0-	47
B+	34
B-	16
A+	45
Somme	N=200

Taille d'échantillon

Modalités	n_i : Effectif
0+	15
A-	25
AB+	18
0-	47
B+	34
B-	16
A+	45
Somme	N=200

Taille d'échantillon

$$\sum_{i=1}^{7} n_i = 15 + 25 + 18 + 47 + 34 + 16 + 45 = 200 = N$$

Modalités	n_i : Effectif		
0+	15		
A-	25		
AB+	18	1	
0-	47		
B+	34		
B-	16		
A+	45		
Somme	N=200		
	Taille d'échantillo	_	

$$\sum_{i=1}^{7} n_i = 15 + 25 + 18 + 47 + 34 + 16 + 45 = 200 = N$$

Modalités	n_i : Effectif		50 🕇				47			45
0+	15					GS				
A-	25		40					34		
AB+	18	4	30		25		_			_
0-	47					18				
B+	34		20	15		10			16	
B-	16		10							
A+	45		10							
Somme	N=200		0							-
	†			0+	Α-	AB+	0-	B+	В-	A+
	Taille d'échantillon									

$$\sum_{i=1}^{7} n_i = 15 + 25 + 18 + 47 + 34 + 16 + 45 = 200 = N$$

	Taille d'échantillon				Dia	gran	ıme	en E	Barre	e
	†	,		0+	A-	AB+	0-	B+	B-	A+
Somme	N=200		0							-
A+	45		10							
B-	16		10							
B+	34		20	15		18			16	
0-	47				23	10				
AB+	18	4_	30		25					
A-	25		40					34		
0+	15					GS				
Modalités	n_i : Effectif		50				47			45

$$\sum_{i=1}^{7} n_i = 15 + 25 + 18 + 47 + 34 + 16 + 45 = 200 = N$$

N.B:
On ne peut pas collecter les Barre

fréquence

$$fréquence f_i = \frac{n_i}{N}$$

$$fréquence f_i = \frac{n_i}{N}$$

Modalités	n_i : Effectif	fi
0+	15	15/200=0,075
A-	25	25/200=0,125
AB+	18	18/200=0,09
0-	47	47/200=0,235
B+	34	34/200=0,17
B-	16	16/200=0,08
A+	45	45/200=0,225
Somme	N=200	1

$$fréquence$$
 $f_i = \frac{n_i}{N}$

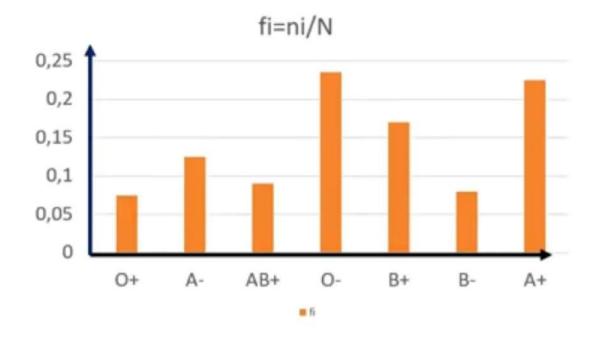
Modalités	n_i : Effectif	fi
0+	15	15/200=0,075
A-	25	25/200=0,125
AB+	18	18/200=0,09
0-	47	47/200=0,235
B+	34	34/200=0,17
B-	16	16/200=0,08
A+	45	45/200=0,225
Somme	N=200	1

$$fréquence f_i = \frac{n_i}{N}$$

Modalités	n_i : Effectif	fi
0+	15	15/200=0,075
A-	25	25/200=0,125
AB+	18	18/200=0,09
0-	47	47/200=0,235
B+	34	34/200=0,17
B-	16	16/200=0,08
A+	45	45/200=0,225
Somme	N=200	1

$$0 \le f_i \le 1$$

$$fréquence f_i = \frac{n_i}{N}$$

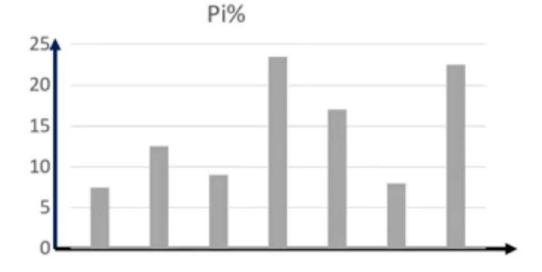

Modalités	n_i : Effectif	f_i
0+	15	15/200=0,075
A-	25	25/200=0,125
AB+	18	18/200=0,09
0-	47	47/200=0,235
B+	34	34/200=0,17
B-	16	16/200=0,08
A+	45	45/200=0,225
Somme	N=200	1

$$\sum_{i=1}^{k} f_i \le \mathbf{1}$$

$$\sum_{i=1}^{k} n_i = \sum_{i=1}^{k} \frac{n_i}{N} = \frac{1}{N} \sum_{i=1}^{k} n_i = \frac{N}{N} = 1$$

$$fréquence$$
 $f_i = \frac{n_i}{N}$

Modalités	n_i : Effectif	f_i
0+	15	15/200=0,075
A-	25	25/200=0,125
AB+	18	18/200=0,09
0-	47	47/200=0,235
B+	34	34/200=0,17
B-	16	16/200=0,08
A+	45	45/200=0,225
Somme	N=200	1

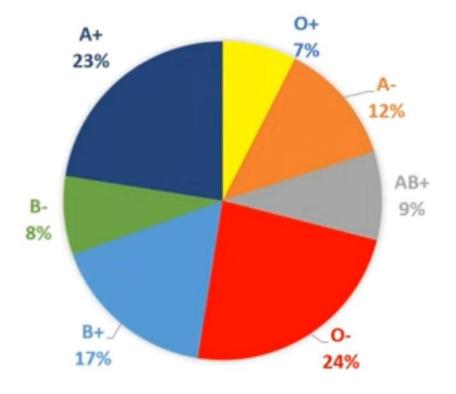

$$\sum_{i=1}^{k} f_i \le \mathbf{1}$$

$$\sum_{i=1}^{k} n_i = \sum_{i=1}^{k} \frac{n_i}{N} = \frac{1}{N} \sum_{i=1}^{k} n_i = \frac{N}{N} = 1$$

Proportion

$$P_i\% = \frac{n_i}{N}\% = f_i\%$$

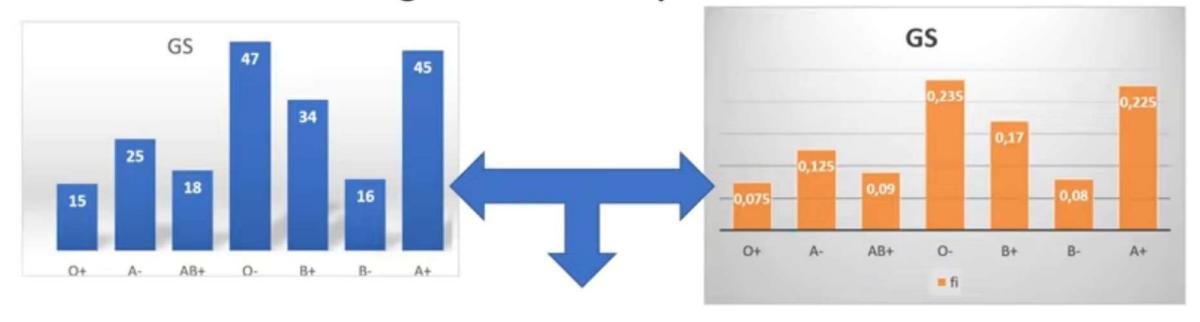
Modalités	n_i : Effectif	fi
0+	15	15/200=0,075
A-	25	25/200=0,125
AB+	18	18/200=0,09
0-	47	47/200=0,235
B+	34	34/200=0,17
B-	16	16/200=0,08
A+	45	45/200=0,225
Somme	N=200	


1

Propriétés de proportion

$$0\% \le P_i \le 100\%$$
 $\sum_{i=1}^k P_i = 100\%$

Présentation Circulaire $\theta_i = f_i \times 360$


Modalités	n_i : Effectif	f_i	$\theta^{\circ}_{i} = f_{i} \times 360$
0+	15	0,075	27
A-	25	0,125	45
AB+	18	0,09	32,4
0-	47	0,235	84,6
B+	34	0,17	61,2
B-	16	0,08	28,8
A+	45	0,225	81
Somme	N=200	1	360

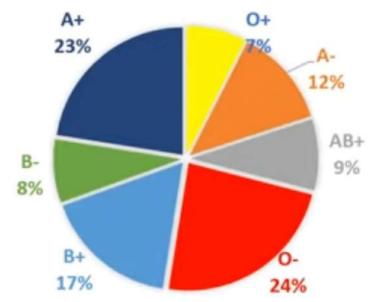


Diagramme Circulaire

Camember

Tous les diagrammes sont équivalents

Analyse Statistique d'une Variable Qualitative Ordinale

Variable Qualitative Ordinale

Taille Vêtement	ni	fi
S	5	0,025
М	35	0,175
L	65	0,325
XL	55	0,275
XXL	40	0,2
Somme	N=200	1

Ordre des Modalités est Important


Variable Qualitative Ordinale

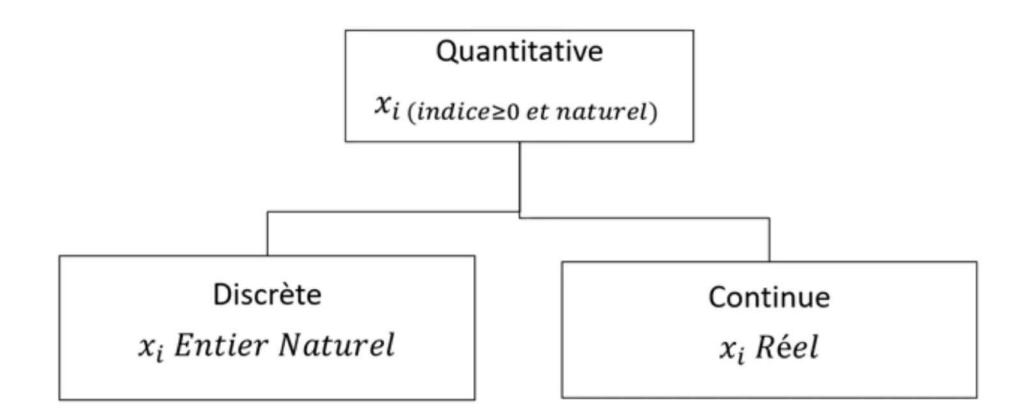
Taille Vêtement	ni	fi
S	5	0,025
М	35	0,175
L	65	0,325
XL	55	0,275
XXL	40	0,2
Somme	N=200	1

Ordre des Modalités est Important

On ne peut pas représenter les données par le diagramme en cercle parce que nous ne voyons pas l'ordre

Analyse Statistique Variables Quantitative

1 – Mette la série en Ordre Croissant


1 – Mette la série en Ordre Croissant

2 – Mette la série dans un tableau $(x_i; n_i)$

- 1 Mette la série en Ordre Croissant
 - 2 Mette la série dans un tableau $(x_i; n_i)$
 - 3 Résumé statistique de base du tableau $(x_i; n_i)$

- 1 Mette la série en Ordre Croissant
 - 2 Mette la série dans un tableau $(x_i; n_i)$
 - 3 Résumé statistique de base du tableau $(x_i; n_i)$
 - 4 Calcul des paramétres statistiques avancés $(x_i; n_i)$

- 1 Mette la série en Ordre Croissant
 - 2 Mette la série dans un tableau $(x_i; n_i)$
 - 3 Résumé statistique de base du tableau $(x_i; n_i)$
 - 4 Calcul des paramétres statistiques avancés $(x_i; n_i)$
 - 5 Résumé statistique détaillée

Nombre d'appels téléphoniques entre 13h et 14h pendant 96 jours

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

Nombre d'appels téléphoniques entre 13h et 14h pendant 96 jours

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

$Tableau(x_i; n_i)$

ν.	20	f.
x_i	n_i	f_i
0	2	0,0208
1	14	0,1458
2	23	0,2396
3	24	0,2500
4	18	0,1875
5	9	0,0938
6	6	0,0625
Total	96	1

Nombre d'appels téléphoniques entre 13h et 14h pendant 96 jours

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

$Tableau(x_i; n_i)$

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
n_i	f_i			
2	0,0208			
14	0,1458			
23	0,2396			
24	0,2500			
18	0,1875			
9	0,0938			
6	0,0625			
96	1			
	2 14 23 24 18 9			

Résumé Statistique de base:

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

Tableau $(x_i; n_i)$

x_i	n_i	f_i
0	2	0,0208
1	14	0,1458
2	23	0,2396
3	24	0,2500
4	18	0,1875
5	9	0,0938
6	6	0,0625
Total	96	1

1-
$$Min(x_i) = 0$$

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

$Tableau(x_i; n_i)$

x_i	n_i	f_i
0	2	0,0208
1	14	0,1458
2	23	0,2396
3	24	0,2500
4	18	0,1875
5	9	0,0938
6	6	0,0625
Total	96	1

$$1-\min(x_i)=0$$

2-
$$Max(x_i) = 6$$

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

Tableau $(x_i; n_i)$

x_i	n_i	f_i
0	2	0,0208
1	14	0,1458
2	23	0,2396
3	24	0,2500
4	18	0,1875
5	9	0,0938
6	6	0,0625
Total	96	1

$$1-\min(x_i)=0$$

2-
$$Max(x_i) = 6$$

3-Etendu =
$$Max(x_i) - Min(x_i) = 6 - 0 = 6$$

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

$Tableau(x_i; n_i)$

x_i	n_i	f_i		
0	2	0,0208		
1	14	0,1458		
2	23	0,2396		
3	24	0,2500		
4	18	0,1875		
5	9	0,0938		
6	6	0,0625		
Total	96	1		
Total	96	1		

1-
$$Min(x_i) = 0$$

2-
$$Max(x_i) = 6$$

3-Etendu =
$$Max(x_i) - Min(x_i) = 6 - 0 = 6$$

4-Taille Echantillon
$$\sum n_i = 96$$

N. A: Variable quantitative discréte $x_i = \{0; 1; 2; ; ; ; k\}$

Tableau $(x_i; n_i)$

x_i	n_i	f_i	
0	2	0,0208	
1	14	0,1458	
2	23	0,2396	
3	24	0,2500	
4	18	0,1875	
5	9	0,0938	
6	6	0,0625	
Total	96	1	

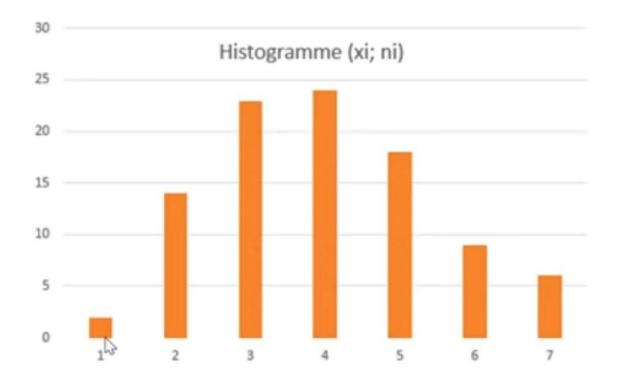
$$1-\min(x_i)=0$$

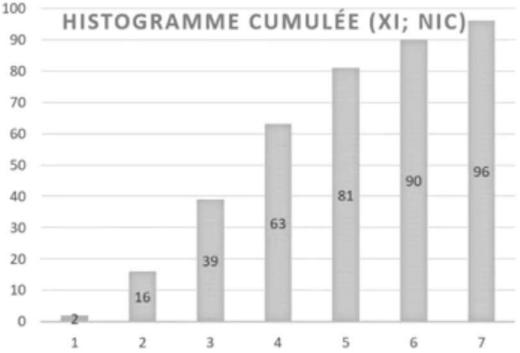
2-
$$Max(x_i) = 6$$

3-Etendu =
$$Max(x_i) - Min(x_i) = 6 - 0 = 6$$

4-Taille Echantillon
$$\sum n_i = 96$$

5-Mode
$$(x_i) = 3$$


$Tableau\left(x_{i};n_{i};n_{i\mathcal{C}}\right)$


x_i	n_i	f_i	n_{ic}	f_{ic}
0	2	0,0208	2	0,0208
1	14	0,1458	16	0,1667
2	23	0,2396	39	0,4063
3	24	0,2500	63	0,6563
4	18	0,1875	81	0,8438
5	9	0,0938	90	0,9375
6	6	0,0625	96	1,0000
Total	96	1		

 $Tableau\left(x_{i};n_{i};n_{i\mathcal{C}}\right)$

x_i	n_i	f_i	n_{ic}	f_{ic}
0	2	0,0208	2	0,0208
1	14	0,1458	16	0,1667
2	23	0,2396	39	0,4063
3	24	0,2500	63	0,6563
4	18	0,1875	81	0,8438
5	9	0,0938	90	0,9375
6	6	0,0625	96	1,0000
Total	96	1		

$$f_i = \frac{n_i}{N}$$
$$f_{ic} = \frac{n_{ic}}{N}$$

VARIABLES CONTINUES

On veut réaliser une étude statistique de la température pour la ville d'Alger.

On veut réaliser une étude statistique de la température pour la ville d'Alger.

Pour cela on utilise la série des mesures météorologiques pour la ville d'Alger

On veut réaliser une étude statistique de la température pour la ville d'Alger.

Pour cela on utilise la série des mesures météorologiques pour la ville d'Alger

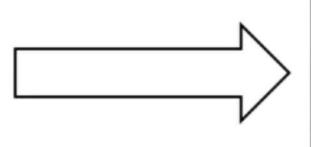
L'enregistrement de la Température a commencé en 1936. Par conséquent nous aurons:

On veut réaliser une étude statistique de la température pour la ville d'Alger.

Pour cela on utilise la série des mesures météorologiques pour la ville d'Alger

L'enregistrement de la Température a commencé en 1936. Par conséquent nous aurons:

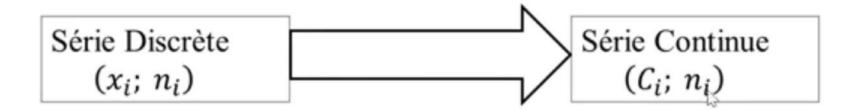
84 ans cela est : $8 \times 365 \times 84 = 245280$ donnés de Température


0,398563	0,862433	0,233661	0,828958	0,399697	0,128532	0,724628	0,513144	0,290524
0,913205	0,665177	0,16835	0,712296	0,724048	0,883103	0,863983	0,428169	0,710225
0,643547	0,442858	0,770553	0,201848	0,533044	0,099452	0,003563	0,705057	0,357485
0,521558	0,776891	0,85895	0,070085	0,37605	0,600906	0,868371	0,123017	0,379389
0,155698	0,066355	0,106683	0,416961	0,826015	0,186532	0,054877	0,515014	0,170617
0,240394	0,085231	0,472913	0,344016	0,618453	0,605198	0,892019	0,615989	0,357918
0,975967	0,179246	0,709122	0,619751	0,971466	0,724025	0,307303	0,426187	0,87511
0,186431	0,834333	0,072661	0,928467	0,439112	0,068272	0,402409	0,794518	0,593687
0,341397	0,761396	0,622375	0,13588	0,313941	0,595626	0,425413	0,228216	0,163694
0,901309	0,80112	0,950583	0,472524	0,809821	0,609849	0,913568	0,659145	0,336174
0,534909	0,569276	0,668962	0,501379	0,797927	0,227546	0,009419	0,408952	0,991824
0,693639	0,028721	0,456073	0,564987	0,338275	0,505436	0,293068	0,393156	0,714887
0,093879	0,278655	0,578029	0,336706	0,256111	0,959462	0,89881	0,489972	0,762728
0,678127	0,882485	0,721806	0,367569	0,913646	0,255827	0,864326	0,200005	0,351577
0,659308	0,257577	0,631368	0,04683	0,141029	0,879983	0,257637	0,355824	0,852987
0,181454	0,679637	0,148561	0,499109	0,382869	0,578009	0,430439	0,303979	0,910799
0,15566	0,431304	0,979968	0,49611	0,75676	0,94955	0,310045	0,994544	0,173858
0,966696	0,946929	0,330432	0,215436	0,976217	0,551086	0,779058	0,988069	0,532526
0,418725	0,720228	0,113137	0,85658	0,690068	0,875094	0,76708	0,935659	0,613974
0,128656	0,380535	0,844484	0,60119	0,33593	0,377979	0,234745	0,621254	0,559093
0,941561	0,360763	0,589638	0,226963	0,450999	0,811889	0,426986	0,970656	0,261104
0,962431	0,063166	0,008448	0,538932	0,608367	0,403576	0,023011	0,879726	0,0162
0,398468	0,996169	0,719487	0,049363	0,340081	0,565029	0,8871	0,086965	0,628804
0,118679	0,093324	0,007751	0,674551	0,131435	0,676127	0,399699	0,484164	0,971436

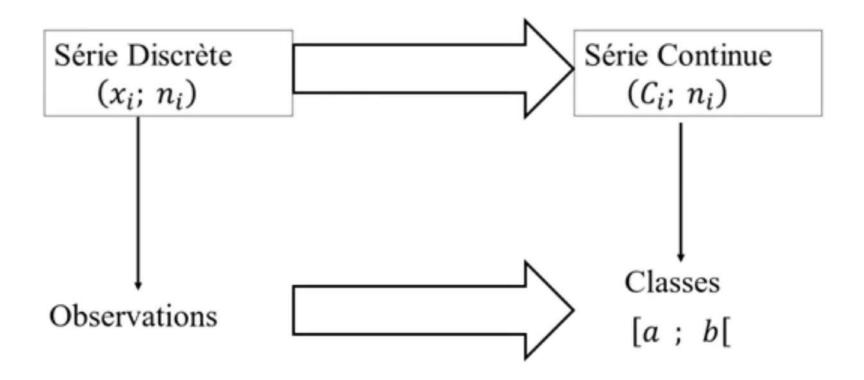
Nous aurons des centaines de feuilles à analyser !!!!!

хi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

Exempl	e


хi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

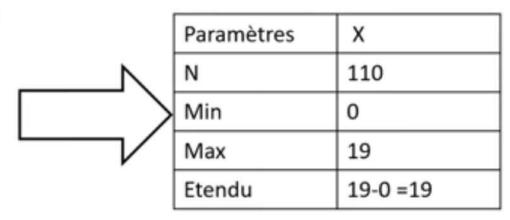
Paramètres	х
N	110
Min	0
Max	19
Etendu	19-0 =19


88

Solution

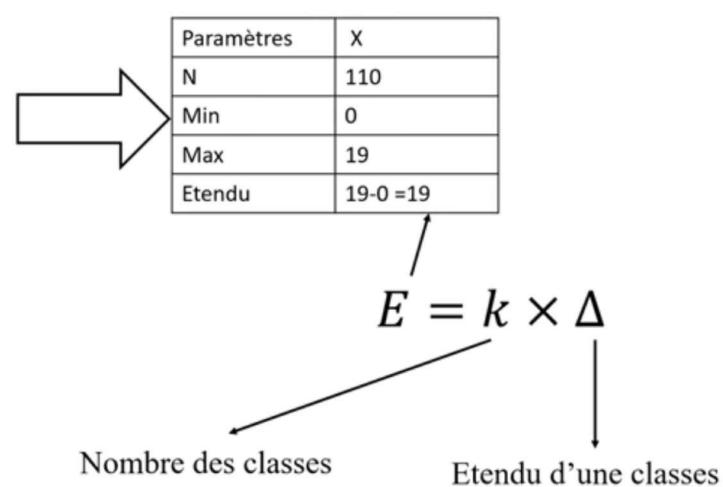
Solution

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

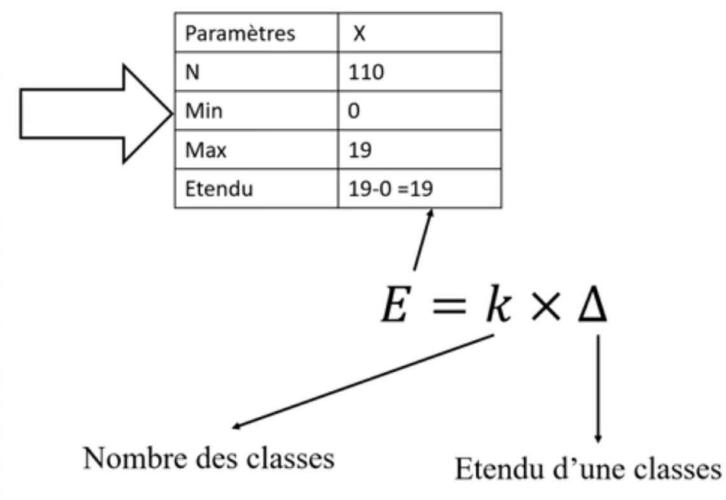

2 - 34 91

	Paramètres	х
	N	110
\square	Min	0
	Max	19
	Etendu	19-0 =19
	Licinad	15 0 -15

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110


2 - 34 92

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110



$$E = k \times \Delta$$

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

k: C'est un entier que nous fixons

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

	ni
xi	
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

$$E = 7 \times \Delta \longrightarrow \Delta = \frac{19}{7} = 2,57 \cong 3$$

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

	19	
$E = 7 \times \Delta$	$\Delta = \frac{19}{7} = 2,57$	≅ 3

Classes	Centre des classes Xi	ni	nic
[0 - 3[1,5	7	7
[3 - 6[4,5	13	20
[6 - 🖟 9[7,5	20	40
[9 - 12[10,5	30	70
[12- 15[13,5	24	94
[15 - 18[16,5	12	106
[18 - 21[19,5	4	110
Somme		110	

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

	19
$E = 7 \times \Delta$	$\rightarrow \Delta = \frac{19}{7} = 2,57 \cong 3$

Classes		Centre des classes Xi	ni	nic
[0 -	3 [1,5	7	7
[3 -	6 [4,5	13	20
[6 -	9 [7,5	20	40
[9 -	12[10,5	30	70
[12-	15[13,5	24	94
[15 -	18[16,5	12	106
[18 - 21[19,5	4	110
Somme			110	

xi	ni
0	2
1	3
2	2
3	5
4	2
5	6
6	5
7	8
8	7
9	9
10	11
11	10
12	8
13	9
14	7
15	6
16	4
17	2
18	3
19	1
Somme	110

$$E = 7 \times \Delta \longrightarrow \Delta = \frac{19}{7} = 2,57 \cong 3$$

	Classes		Centre des classes Xi	ni	nic	
•	[0 -	3 [1,5	7	7	
0	[3 -	6 [4,5	13	20	
ĺ	[6 -	9 [7,5	20	40	
	[9 -	12[10,5	30	70	
1	[12-	15[13,5	24	94	
1	[15 -	18[16,5	12	106	
1	[18 -	21[19,5	4	110	
	Somme			110		

- * Calculer l'étendue $e = X_{max} X_{min}$.
- * Calculer le nombre de classes $k = \sqrt{n}$.
- * Calculer la longueur de classe $l = \frac{e}{k}$.

Exemple 16 A fin d'étudier la structure de la population de gélinottes huppées abattues par les chasseurs, une étude du dimorphisme sexuel de cette espéce a été entreprise. Parmi les caractères mesurés figure la longueur de la rectrice centrale (plume de la queue). Les resultats observés exprimés en millimétres sur un échantillon de 50 mâles juvéniles sont notés dans la série ci-dessus:

153	165	160	150	159	151	163	160	158	149
154	153	163	140	158	150	158	155	163	159
157	162	160	152	164	158	153	162	166	162
165	157	174	158	171	162	155	156	159	162
152	158	164	164	162	158	156	171	164	158

Les valeurs de la longueur de la rectrice peuvent être réparties de la façon suivante:

- * Définition de l'étendue $e = X_{max} X_{min} = 174 140 = 34$
- * Définition du nombre de classes $k = \sqrt{n} \approx 7$
- * Définition du longueur de classes $l = \frac{e}{k} \simeq 5$

et par suite on a le tableau suivant:

Classes	[140, 145[[145, 150[[150, 155[[155, 160[[160, 165[[165, 170[[170, 175[
Effectif	1	1	9	17	16	3	3

Les références:

- Dabis F, Drucker J, Moren A. Épidémiologie d'intervention. Édition 1992
- Schwartz D. Méthodes statistiques. 1992
- Ancelle T. Statistique Épidémiologie. Édition 2002
- Mesli MF, Mokhtari A. Biostatistique. Édition mai 2007
- Cours de monsieur Bachari Nour el islam.