University A. Elhafidh Boussouf Mila Institute of Science and Technology Department of Process Engineering

Serie No. 5

Exercice 1

Give the name of the following complex. $[Ni(CO)_4]$, $[Co(H_2O)_6]^{2+}$, $[Al(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{4-}$, $[Cu(NH_3)_4]^{2+}$, $[Zn(H_2O)_6]^{2+}$, $[CoCl(NH_3)_5]^{2+}$, $[CrCl_2(H_2O)_4]^{+}$

Exercice 2

Give the name of the following complex containing polydentate anionic ligands $[Co(S_2O_3)_3]^{3-}$, $[Fe(C_2O_4)_3]^{3-}$, $[Cr(C_2O_4)_2(NH_3)_2]^{-}$

Exercice 3

Give the structure of the following complex:

Diaqua(bis(ethylenediamine))nickel(II)ion, Dichloro(bis(ethylenediamine))cobalt(III) ion, Dinitrato(bis(ethylenediamine))iron(II), Diaqua(bis(ethylenediamine))chromium(III) ion, Diaqua(bis(ethylenediamine))manganese(II) ion

Exercice 4

Consider the following species: $[Co(NH_3)_6]^{3+}$, $[Cu(NH_3)_4]^{2+}$, $[Ag(CN)_2]^-$, $[Fe(CN)_6]^{3-}$, Co^{3+} , Cu^{2+} , Fe^{3+} , Cu^+ , Co^{2+} , Ag^+ , Ag^{3+}

- 1) Form all possible donor-acceptor ligand pairs for the given species.
- 2) Provide the expression for the global formation constant $K_{\rm f}$ for each of the complexes.

Exercice 5

A solution contains 0.01 M of Cu^{2+} ions and an excess of NH₃. The following stepwise formation constants are given for the reaction of Cu^{2+} with NH₃: $\text{K}_1 = 10^4$, $\text{K}_2 = 10^3$, $\text{K}_3 = 10^2$

- 1) Give the stepwise reactions for the complexation of Cu²⁺ with NH₃.
- 2) Write the overall formation constant (β_3) for the triammonia complex $[Cu(NH_3)_3]^{2+}$.
- 3) If the concentration of free NH_3 is 0.1 M, calculate the equilibrium concentration of $[Cu(NH_3)_3]^{2+}$ in the solution.

Exercice 6

Consider the Co^{2+} ion, which forms two different complexes with different ligands : one with oxalate $C_2O_4^{-2}$ to form $[Co(C_2O_4)_3]^{4-}$, with $\log \beta_3 = 19.2$, and the other with ethylenediamine (en) to form $[Co(en)_3]^{2+}$, with $\log \beta_{3'} = 13.2$.

- 1. Write the formation equilibria of the two complexes and express the formation constants β_3 and $\beta_{3'}$.
- 2. Which of the two complexes is more stable?

A 100 mL solution containing $[Co(en)_3]^{2+}$ at a concentration of 0.02 mol/L is mixed with 0.02 moles of sodium oxalate $(Na_2C_2O_4)$ without dilution.

- a. Write the equation for the reaction that takes place in the solution.
- b. Calculate the equilibrium constant for this reaction.
- c. Determine the composition of the system at equilibrium.