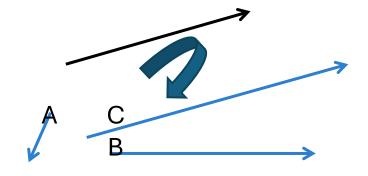
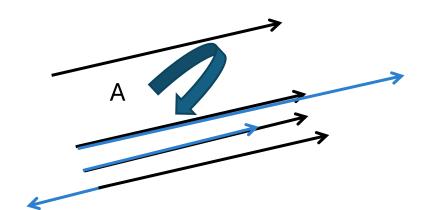
$$f \in \mathcal{L}(E,F) \colon \begin{cases} E & \to & F \\ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} & \to & \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} & \text{avec } A \in M_n(K) \end{cases}$$

$$x_1$$
 \vdots
 x_n
 y_1
 \vdots
 y_n





$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$AX = \lambda X$$

$$X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
: vecteur propre de A

correspondant a la valeur propre $\lambda = 3$

Définition

• On dit que λ est une valeur propre de la matrice A s'il existe <u>un vecteur x non nul</u> solution de

$$Ax = \lambda x$$

• Le vecteur \underline{x} est alors dit vecteur propre associé à λ

• Les valeurs propres d'une matrice A d'ordre n sont: les racines dans K du polynôme caractéristique associé à A

$$\rightarrow$$
 racines de $P_A(\lambda) = \det(\lambda I - A)$

• À toute valeur propre λ d'une matrice A, est associé au moins un vecteur non nul v tel que $Av = \lambda v$, appelé vecteur propre de la matrice A correspondant à la valeur propre λ .

on a
$$\lambda x = Ax$$

$$0 = \lambda x - Ax$$

$$0 = \lambda Ix - Ax$$

$$0 = (\lambda I - A)x$$

$$\Rightarrow Bx = 0$$

- $\det(\lambda I A) = 0$: équation caractéristique de A
- $\det(\lambda I A)$ polynôme caractéristique de A, noté $P_A(\lambda)$

Exemple:

Trouver les valeurs et les vecteurs propres de la matrice A

$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

1) Les valeurs propres de A sont les solution de $det(A - \lambda I) = 0$

$$\det(A - \lambda I) = \det \left(\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

$$= \det \begin{pmatrix} 1 - \lambda & 2 \\ 0 & -1 - \lambda \end{pmatrix} = \begin{vmatrix} 1 - \lambda & 2 \\ 0 & -1 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)(-1 - \lambda)$$
D'où $\det(A - \lambda I) = 0 \Leftrightarrow \lambda_1 = 1; \lambda_2 = -1$

2) Vecteurs propres

• Pour λ_1 =1, le vecteur propre $\binom{x}{y}$ associé est solution de l'équation caractéristique

$$(A - 1I) \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$\begin{pmatrix} 1 - 1 & 2 \\ 0 & -1 - 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2y \\ -2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

D'où la famille des vecteurs propre associé à λ_1 =1 est $\binom{1}{0}$,

• Pour λ_2 =-1, le vecteur propre $\begin{pmatrix} x \\ y \end{pmatrix}$ associé est solution de

$$(A - (-1)I) \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$\begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 2x + 2y \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x + y = 0 \rightarrow y = -x \qquad {x \choose y} = {x \choose -x} = x {1 \choose -1}$$

D'où la famille des vecteurs propre associé à λ_2 =-1 est $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}.$$

L'équation caractéristique de A est

$$(\lambda - 2)^2(\lambda - 1) = 0,$$

d'où les valeurs propres sont $\lambda_1 = 1$ et $\lambda_2 = \lambda_3 = 2$.

1. Cas $\lambda_1 = 1$. On doit trouver $\mathbf{x} = (x_1, x_2, x_3)$ tel que

Par conséquent :

- ▶ la solution du système d'équations est $x_1 = -2x_3$, $x_2 = x_3$ et x_3 est une variable libre;
- (-2s, s, s) est un vecteur propre correspondant à $\lambda = 1$;
- en fait, tout vecteur de la forme (-2, 1, 1) est un vecteur propre correspondant à $\lambda = 1$.

Ainsi, (-2,1,1) est une base de vecteurs propres correspondant à $\lambda = 1$.

$$(\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}$$

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

L'équation caractéristique de A est

2. Cas
$$\lambda_2 = \lambda_3 = 2$$
.

$$(\lambda - 2)^2(\lambda - 1) = 0,$$

$$(2\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}$$

soit

$$\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Par conséquent :

- ▶ la solution est $x_1 = -x_3$, x_2 et x_3 sont des variables libres;
- (s, t, -s) est un vecteur propre correspondant à $\lambda = 2$;
- on a

$$\begin{bmatrix} s \\ t \\ -s \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Ainsi (1,0,-1) et (0,1,0) forment une base de vecteurs propres correspondant à $\lambda = 2$.

Spectre, Rayon spectral, ...

- Le spectre de A, noté $\sigma_{\mathbb{K}}(A)$ est l'ensemble des valeurs propres de A dans \mathbb{K} .
 - Si $\sigma_{\mathbb{K}}(A) \neq \Phi$, le rayon spectrale de A est le réel positif défini par $\rho(A) = \max\{|\lambda| \ / \ \lambda \in \sigma_{\mathbb{K}}(A)\}$

Quelques propriétés

- $\sigma_{\mathbb{K}}(A) = \sigma_{\mathbb{K}}(A^t)$
- Soit la matrice A d'ordre n à coefficients dans \mathbb{K} , et possédant toujours n valeurs propres λ_i , $i=1,\ldots,n$ distinctes ou confondues, on a les propriétés suivantes :

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$
 $\operatorname{det}(A) = \prod_{i=1}^{n} \lambda_i$

Spectre, Rayon spectral, ...

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

• Les valeurs propres de la matrice A (calculées précédemment et associé aux vecteur propre) sont $\lambda_1=1$, $\lambda_2=\lambda_3=2$

$$tr(A) = \sum_{i=1}^{n} \lambda_i = 5$$

$$\det(A) = \prod_{i=1}^{n} \lambda_i = 4$$