Exercice 1

A commercial sulfuric acid solution contains 93% by mass of H_2SO_4 , and its density is 1.84 g/mL. Use the molar mass of $H_2SO_4 = 98.08$ g/mol., and calculate the following for this solution :

- 1. Molar concentration (Molarity)
- **2.** Normality
- 3. Molality
- **4.** Mole fraction
- 5. Molar percentage

Exercice 2

A sodium chloride (NaCl) solution has a conductivity of 2.45 mS·cm⁻¹ at 25°C.

- **1.** Convert the conductivity σ , the conductivity, in S·m⁻¹.
- 2. The ionic conductivities of Na⁺ and Cl⁻ are given as : $\lambda_{Na+} = 5.01 \text{ mS} \cdot \text{mol}^{-1}, \lambda_{Cl-} = 7.63 \text{ mS} \cdot \text{m}^2 \cdot \text{mol}^{-1}$.
 - **2.1.** Convert these ionic conductivities to $S \cdot m^2 \cdot mol^{-1}$.
 - **2.2.** Calculate the concentration C of the NaCl solution in $mol \cdot L^{-1}$.

Exercice 3

You mix a volume $V_1=150 \text{ mL}$ of a sodium chloride (Na^++Cl^-) solution with concentration $C_1 = 4.0 \times 10^{-3} \text{ mol/L}$ with a volume $V_2 = 500 \text{ mL}$ of a potassium nitrate $(K^++NO_3^-)$ solution with concentration $C_2 = 3.0 \times 10^{-3} \text{ mol/L}$.

1. What is the conductivity of the resulting solution ?

2. In the mixture, a conductometer cell is placed. The surface area of the electrodes is 1.5 cm^2 , and the distance between them is 1.2 cm. What is the value of the conductance ?

Given :

$$\begin{split} \lambda_{Na+} &= 5.00 \times 10^{-3} \; S \cdot \; m^2 / mol, \; \lambda_{Cl-} = 7.00 \times 10^{-3} \; S \cdot \; m^2 / mol, \; \lambda_{K+} = 7.50 \times 10^{-3} \; S \cdot m^2 / mol, \\ \lambda_{NO3-} &= 5.80 \times 10^{-3} \; S \cdot m^2 / mol. \end{split}$$