Exercice 1

A commercial phosphoric acid solution contains 75% by mass of H_3PO_4 , and its density is 1.57 g/mL. Determine the molar concentration, normality, molality, mole fraction, and molar percentage of H_3PO_4 in this commercial solution.

Serie No. 1

Exercice 2

The measurement of the conductivity of a potassium chloride $(K^+ + Cl^-)$ solution with concentration C gives 1.224 mS·cm⁻¹ at 21°C.

- 1. Express σ , the conductivity, in S·m⁻¹.
- 2. The following values are provided : $\lambda_{cl-} = 7,63 \text{ mS. } m^2 \text{ mol}^{-1} \text{ ; } \lambda_{K+} = 7,35 \text{ mS. } m^2 \text{ mol}^{-1}$
 - 2.1. What does the letter λ represent ?
 - 2.2. Convert these values to m^2 . mol^{-1} .
 - 2.3. Determine the concentration C in *mol*. L^{-1} .

Exercice 3

An unknown amount m_{LiCl} of lithium chloride was dissolved in a 200 mL volumetric

flask. Given :

Molar conductivities at 25° C : $\lambda_{Li+}=3,86$ mS.m²/mol⁻¹; $\lambda_{CI}=7,63$ mS.m².mol⁻¹

Molar masses : $M_{Li} = 6.9 \text{ g.mol}^{-1}$, $M_{Cl} = 35.5 \text{ g.mol}^{-1}$

a) Determine the concentration C in mol.L⁻¹ of this solution, knowing that its conductivity is $\sigma = 34.5 \text{ mS.cm}^{-1}$ (we previously calibrated the conductometer).

b) What mass m_{LiCl} of lithium chloride was placed in the volumetric flask?

Exercice 4

A potassium chloride (KCl) solution has a concentration $C = 5.10^{-3} \text{ mol.L}^{-1}$.

- 1. Write the equation for the dissolution reaction of potassium chloride in water.
- 2. The dissolution is complete. Calculate, in mol.m⁻³, the concentrations of the ions K⁺ et Cl⁻ in the solution. Justify your answer clearly.
- 3. Calculate the conductivity of the solution.

Given :

Ionic molar conductivities : $\lambda_{Cl} = 7,63.10^{-3} \text{ S.m}^2 \text{.mol}^{-1}$, $\lambda_{K+} = 7,4.10^{-3} \text{ S.m}^2 \text{.mol}^{-1}$

Exercice 5

Dissolve 0.5 g of calcium nitrate $Ca(NO_3)_2$ in a 200 mL volumetric flask.

Given :

Molar mass of calcium nitrate : $M_{Ca(NO3)2} = 164$ g/mol.

Ionic molar conductivities at 25°C: $\lambda_{Ca2+} = 11,90 \text{ mS.m}^2 \text{ mol}^{-1}$; $\lambda_{NO3-} = 7,14 \text{ mS.m}^2 \text{ mol}^{-1}$ Ionic molar conductivities at 20°C: $\lambda_{Ca2+} = 7,44 \text{ mS.m}^2 \text{ mol}^{-1}$; $\lambda_{NO3-} = 6,43 \text{ mS.m}^2 \text{ mol}^{-1}$ a) Indicate the ions present in the solution and calculate their concentrations.

b) Calculate the conductivity σ at 25°C and 20°C. Explain the difference in results.

Exercice 6

We mix a volume $V_1 = 200 \ mL$ of a potassium chloride $(K^+ + Cl^-)$ solution with concentration $C_1 = 5,0.10^{-3} \ mol/L$ with a volume $V_2 = 800 \ mL$ of a sodium chloride $(Na^+ + Cl^-)$ solution with concentration $C_2 = 1,25.10^{-3} \ mol/L$.

- 1. What is the conductivity of the resulting solution ?
- 2. In the previous mixture, a conductometer cell is placed. The surface area of the electrodes is $11,0cm^2$ and the distance between them is 1,1 cm.
 - 2.1. What is the value of the conductance ?

Given :

 $\lambda_{Na+} = 5,01.10^{-3} S. m^2 / mol$ $\lambda_{Cl-} = 7,63.10^{-3} S. m^2 / mol$ $\lambda_{K+} = 7,35.10^{-3} S. m^2 / mol$

Exercice 7

Using a cell, the conductance G of a sodium chloride (*NaCl*) solution S₁ with concentration $c = 5.10^{-3}$ mol/ L was measured, and it was found to be $G = 5.45.10^{-3}$ S.

1.1. Write the equation for the dissociation reaction of sodium chloride in water.

1.2. The dissociation of *NaCl* is complete. Determine the concentrations (in *mol/* L and *mol/*

 m^3) of the ions Na^+ and Cl^- . Provide a clear justification for your answer.

1.3. Determine the conductivity $\boldsymbol{\sigma}$ of the solution.

1.4. The value K = L/S (where L is the distance between the electrodes and S is the submerged surface area of an electrode) is called the "cell constant." Determine K. **Given :**

Ionic molar conductivities : $\lambda_{Na+} = 3,87.10^{-3} S. m^2. mol$; $\lambda_{Cl-} = 7,63.10^{-3} S. m^2/mol$