
Part 2: The basics of Algorithm and Program
 Course 11_12_13: Functions in C Language

 By

 Academic year : 2024/2025

1st year ST – ENGINEERING

Dr. Farouk KECITA

1

2

 What is a Function?

 A function as series of instructions or group of statements with one specific purpose.

 A function is a program segment that carries out some specific, well defined task.

 A function is a self contained block of code that performs a particular task.

 Suppose we are building an application in C language and in one of our program,

we need to perform a same task more than once. In such case we have two

options:

a. Use the same set of statements every time we want to perform the task

b. Create a function to perform that task, and just call it every time we need to

perform that task.

 Here option (b) is obviously a good practice.

 Introduction

3 Introduction

 Need functions in C

 Functions are used because of following reasons :

 To improve the readability of code.

 Improves the reusability of the code, same function can be

used in any program rather than writing the same code again.

 Debugging of the code would be easier if we use functions,

as errors are easy to be traced.

 Reduces the size of the code, duplicate set of statements are

replaced by function calls.

4 I. Types of functions

 C functions can be classified into two types,

1) Library functions /pre defined functions /standard functions /built in functions

2) User defined functions.

1. Library functions:

 These functions are defined in the library of C compiler which are used frequently
in the C program.

 These functions are written by designers of C compiler.

 C supports many built in functions like:

• Mathematical functions.

• String manipulation functions.

• Input and output functions.

• Memory management functions.

• Error handling functions.

5 I. Types of functions

 EXAMPLES:

 pow(x,y)-computes x^y.

 sqrt(x)-computes square root of x.

 printf()-used to print the data on the screen.

 scanf()-used to read the data from keyboard.

2. User Defined Functions:

 The functions written by the programmer /user to do the specific tasks are

called user defined function(UDF’s).

 The user can construct their own functions to perform some specific task.

This type of functions created by the user is termed as User defined

functions.

6 II. Elements of User Defined Function

The Three Elements of User Defined function structure consists of :

a) Function Definition

b) Function Declaration / prototype

c) Function call

A. Function Definition:

A program Module written to achieve a specific task is called as function

definition.

 Each function definition consists of two parts:

i. Function header

ii. Function body

7 II. Elements of User Defined Function

General syntax of function definition

8

i. Function header

 Syntax: data_type function_name(parameters)

 It consists of three parts:

a) Data_type:

 The data type can be int, float, char, double, void.

 This is the data type of the value that the function is expected to return to calling function.

b) function_name:

 The name of the function. It should be a valid identifier.

c) parameters

 The parameters are list of variables enclosed within parenthesis.

 The list of variables should be separated by comma.

 EXAMPLE: int add(int a, int b)

II. Elements of User Defined Function

9 II. Elements of User Defined Function

ii. Function body

 The function body consists of the set of instructions enclosed between { and } .

 The function body consists of following three elements:

a) declaration part: variables used in function body.

b) executable part: set of Statements or instructions to do specific activity.

c) return : It is a keyword, it is used to return control back to calling function.

 If a function is not returning value then statement is:

 return;

 If a function is returning value then statement is:

 return value;

10 II. Elements of User Defined Function

B. Function Declaration / prototype

 function declaration Consists of the data type of function, name of the

function and parameter list ending with semicolon.

Note: The function declaration should end with a semicolon ;

11 II. Elements of User Defined Function

C. Function Call

 The method of calling a function to achieve a specific task is called as

function call.

 A function call is defined as function name followed by semicolon.

 A function call is nothing but invoking a function at the required place in the

program to achieve a specific task.

 EXAMPLE:

void main() {

 add(); // function call without parameter

 }

12 II. Elements of User Defined Function

Formal Parameters and Actual Parameters

1) Formal Parameters:

 The variables defined in the function header of function definition are called

formal parameters.

 All the variables should be separately declared and each declaration must be

separated by commas.

 The formal parameters receive the data from actual parameters.

2) Actual Parameters:

The variables that are used when a function is invoked (in function call)

are called actual parameters.

Using actual parameters, the data can be transferred from calling

function to the called function.

13 II. Elements of User Defined Function

Formal Parameters and Actual Parameters

 The corresponding formal parameters in the function definition receive them.

 The actual parameters and formal parameters must match in number and type of

data.

3) Differences between Actual and Formal Parameters

14 II. Elements of User Defined Function

3) Differences between Actual and Formal Parameters

15 III. Categories of the functions

In C programming language, function can be called either with

or without arguments and might return values. They may or

might not return values to the calling functions.

1. Function with no parameters and no return values.

2. Function with no parameters and return values.

3. Function with parameters and no return values.

4. Function with parameters and return values.

16 III. Categories of the functions

1. Function with no parameters and no return values.

17 III. Categories of the functions

1. Function with no parameters and no return values.

 In this category no data is transferred from calling function to called

function, hence called function cannot receive any values.

 In the above example, no arguments are passed to user defined function

add().

Hence no parameter are defined in function header.

When the control is transferred from calling function to called function, a

and b values are read, they are added, the result is printed on monitor.

When return statement is executed ,control is transferred from called

function / add to calling function / main.

18 III. Categories of the functions

2. Function with no parameters and return values.

19 III. Categories of the functions

2. Function with no parameters and return values.

In this category, there is data transfer from the calling function

to the called function using parameters.

But there is no data transfer from called function to the calling

function.

The values of actual parameters m and n are copied into

formal parameters a and b.

The value of a and b are added and result stored in sum is

displayed on the screen in called function itself.

20 III. Categories of the functions

3. Function with parameters and no return values.

21 III. Categories of the functions

3. Function with parameters and no return values.

 In this category there is no data transfer from the calling function

to the called function.

But, there is data transfer from called function to the calling

function.

No arguments are passed to the function add(). So, no parameters

are defined in the function header.

When the function returns a value, the calling function receives one

value from the called function and assigns to variable result.

The result value is printed in calling function.

22 III. Categories of the functions

4. Function with parameters and return values.

23 III. Categories of the functions

4. Function with parameters and return values.

 In this category, there is data transfer between the calling function and

called function.

When Actual parameters values are passed, the formal parameters in

called function can receive the values from the calling function.

When the add function returns a value, the calling function receives a

value from the called function.

The values of actual parameters m and n are copied into formal

parameters a and b.

 Sum is computed and returned back to calling function which is assigned

to variable result.

24 IV. Passing parameters to functions / Types of argument passing

 The different ways of passing parameters to the function are:

 Pass by value or Call by value.

 Pass by address or Call by address.

1. Pass by value / Call by value.

 A copy of actual arguments is passed to formal arguments of the called

function and any change made to the formal arguments in the called function

have no effect on the values of actual arguments in the calling function.

2. Pass by address / Call by address.

 The location (address) of actual arguments is passed to formal arguments

of the called function.

 This means by accessing the addresses of actual arguments we can alter them

within from the called function.

25 IV. Passing parameters to functions or Types of argument passing

Difference between call by value and call by reference:

26

Example 01: of call by value:

OUT PUT:

27

Example 02: of call by value:

OUT PUT:

28

Example 03: of call by reference:

OUT PUT:

29

Example 04: of call by reference:

 OUT PUT:

30 V. Recursion functions

Recursion is a method of solving the problem where the solution to a

problem depends on solutions to smaller instances of the same problem.

Recursive function is a function that calls itself during the execution.

Basic Structure of Recursive Functions

The basic syntax structure of the recursive functions is:

type function_name (args) {

/// function statements

// base condition

// recursion case (recursive call)

}

31

Example 01: In this example, recursion is used to calculate the factorial

of a number.

 OUT PUT 01:

 OUT PUT 02:

32

Example 02: In this example, recursion is used to calculate the sum of

the first N natural numbers.

 OUT PUT 01:

 OUT PUT 02:

