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Solution to Tutorial Series No. 3 Algebraic Structures

SolutionO 1.

1.

3.

/.

Assoctiativity:
To check if x is associative, we verify if (x xy)* z =x * (y* z) for all x,y,z € R.
Let’s calculate:
TkYy=T+Yy—1Y,
(17*9)*2: ($+y_$y)*2:x—l-y—i—Z—l’y—xz—yz—i—xyz,
Now calculate:
yxz=y+z-yz
zx(yxz)=xx(y+z—yz)=ac+ (y+z—yz) —z(y+ 2z —yz).

Simplifying gives:
T+y+z—xy—x2— Yz + 1Yz,

which equals (x *xy) * z. Hence, x is associative.
Commutativity:
To check if * is commutative, we verify if v xy =y *xx for all v,y € R.

Calculating y * x gives:

Y*T =Y+ —yYr=r+y — Yy =T *Yy.
Therefore, % is commutative.
Neutral Element:

We seek a real number e such that x xe =exx = x for all x € R.

Setting x x e = x gives:
r+e—ze==z.

Simplifying gives e — xe =0, so e(1 —x) = 0. For all x # 1, we have e = 0.

Therefore, the neutral element e is 0.

Inverse Element:

We look for a real number y such that x xy = y * x = e, where e is the neutral element.

Solving x xy = 0 gives:

r4+y—ay=0.
Rearranging gives:
Yy—TYy =—72,
y(l—z) = —x.
So,
-z
L

Hence, the inverse of x under * is =, provided x # 1.
—T
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5. Formula for n-th Power:
We consider the operation * defined on R by:

rxy=x+y—uxy, forallx,yecR.
We aim to derive a formula for x*", defined as:

" =xxx k- x2.
—

n times
Special cases
o forn=1:
.I*l:l’
o Forn=2:
*2 _ 2 _ 2
r“=xxr=x+x—x° =2x —x°.

e forn=3:

*3

T — l'*2

1 = (20 — %) * 1.

By computation, we find:
2z — a2t xx = (20 — 2°) + v — (20 — 2°)v = 3 — 32* + 2°.

General formula
From the special cases, we observe that the n-th power can be written as:

" = nr — (Z) 2 + (Z) 3 — (=) (Z) z",

where the coefficients are the binomial coefficients.

Proof by induction

e Base case: Forn =1, we have o*' = x, which matches the formula.

e Inductive step: Assume that:

We want to show that:

By definition:

n+1)

2 =" xrx ="+ —2" 2.

Substituting the formula for ™ and simplifying, we recover exactly the terms corre-

sponding to:
n+1
1
S )t

k=1
This completes the proof by induction.



Final formula
The n-th power for the operation x is given by:

where (Z) 18 the binomial coefficient.

Solution0 2.
We are given the binary operation x on R defined by

a*b=In(e* + ).

We will now examine the properties of this operation.
1. Commutativity To check if x is commutative, we need to verify if

axb=0bxa forall a,béeR.
Using the definition of the operation:
a*xb=1In(e" +e”) and bxa=In(e"+e).

Since e® + e® = e’ + e, we have:
axb=>bxa.

Thus, the operation x is commutative.
2. Associativity To check if x is associative, we need to verify if

(axb)yxc=ax(bxc) forall a,bceR.

We calculate both sides using the definition of *:
- Left-hand side:

(a*xb)*c=In(e”+ eb) xc=lIn (@ln(€“+€b) + eC) —In ((ea + eb) + ec)
- Right-hand side:
ax(bxc)=axIn(e’ +e) =1In (6‘1 + eln(e”+eﬁ)> =1In (" + (e + ¢°))

Since the two expressions are equal, the operation is associative.
3. Neutral Element To find a neutral element e € R, we need to solve the equation

axe=a forall aecR.
Using the definition of *:
axe=lIn(e"+ e = a.
This simplifies to:
e +ef=¢e" = e =0
Since e = 0 has no real solution, there is no neutral element.
4. Regular Elements An clement x is reqular if there exists an inverse x~' such that

Since there is no neutral element, there are no regular elements.
Conclusion - The operation x is commutative. - The operation * is assoctative. - There
1s no neutral element. - There are no regular elements.



SolutionO 3.
Solution We are given the operation x defined on R™ as:

Vo,y € RY, zxy= a2+ 92

We will analyze the properties step by step.
1. Commutativity To check if the operation x is commutative, compute:

rxy=+22+y2 yxx=\y>+ a2
Since addition is commutative, x* + y* = y* + 22, it follows that:
THkY =1Y*xT.

Thus, the operation * is commutative.
2. Associativity To verify associativity, we need to check if:

(xxy)*z=x*(y*2).
Compute (x xy) * z:
rxy =12+, (vxy)xz= \/(\/x2+y2)2—|—22: Va2 4+ y?+ 22
Compute x x (y * 2):

yrxz=VyP+22 wx(yxz) = \/w2+(\/y2+22)2= Va+y?+ 22

Since both expressions are equal:

(xxy)xz=x*(yx*2).

Thus, the operation * is associative.
3. Existence of a Neutral Element A neutral element e € RT satisfies:

rxe=uz, VreR'.

Using the definition of x:

Txe=Va2+e2=uz.

Squaring both sides:
P?4+ef=12 = €&=0 = e=0.

The neutral element is therefore e = 0.

4. FExistence of Inverse Elements Let us suppose that a symmetric element exists.
However, x x ' = /a2 + 22 = 0 then x® + 2> = 0 then then v = 2’ = 0. So if v > 0, there is
no symmetric element.

Conclusion

e The operation * is commutative.

The operation * is associative.

The neutral element is therefore e = 0.

If x > 0, there is no symmetric element.



SolutionO 4.
1. Proving that (R* x R, %) is a Group: Closure: Given two elements (z,y) and (2',/)
in R* x R, the operation % is defined as:

(z,y) * (2", y) = (z2', 2y’ + y).

Since x,z" € R* and y,y" € R, it follows that xa'’ € R* and xy' +y € R, so the result is in
R* x R. Therefore, the operation is closed.
Associativity: We need to prove that:

((z,y) % (2", 9))  (2",4") = (2, ) = (=", ) (2", 4")).

First, compute the left-hand side:

(z,y) x (2",y) = (x2’, 2y +y),
and then:
(z2’ 2y’ +y) * (2", y") = (x2'2", (zy" + 9)y" + (zy + ).
Now, compute the right-hand side:

/i /o0

(2", y") * (2", y") = (22", 2"y" +4),
and then:
(2, y) x (22", 2"y" +¢) = (x(2'2"), 2(2"y" + o) +y).

Since both sides are equal, the operation x is associative.
Neutral Element: We look for a neutral element (e1,es) such that:

(x’y)*(61762) = (ff,y) and (61762)*($7y> = (I7y)
From the equation:
(z,y) * (e1, €2) = (zer, wez +y),

we must have e; = 1 and ey = 0.
Thus, the neutral element is (1,0).
Inverses: We look for the inverse of (x,y) such that:

(z,y) * (z',9) = (1,0).

From the equation:
(z2’, 2y’ +y) = (1,0),

we get:
' =1 and zy +y=0.
Thus, ' = % and y' = —2.
Therefore, the inverse of (x,y) is (2, —Y).

2. Is the operation x Commutative?
To check if the operation is commutative, we need to verify if:

(z,y) *x (2", ) = (2", y) * (z,9).

We have:
(2, y) % (2, y) = (v2’, 2/ + y),



and
(2" y) * (x,y) = (@z, 2"y +9).

For the operation to be commutative, we must have:
' =2’z and xy +y=2y+7v.

The first condition xx' = x'x holds because multiplication in R* is commutative. However, the
second condition xy' +y = 2’y + 1y is not always true, as the terms involve different variables.
Thus, the operation is not commutative.

3. Simplifying (x,y)":

To compute (x,y)™ using the operation *, we observe the following pattern:

(z,y)" = (@",nzy +y(1+2+ -+ (n—1))).
The sum 1+ 2+ --- 4 (n — 1) is the sum of the first n — 1 integers, which is given by:
(n—1)n

Thus, we have:

Summary:
o (R* x R, %) is a group.
e The operation 1s not commutative.

o (z,y)" = (2", nay + 520%).

SolutionO 5.
We define on R, the composition law o by:

roy=x+y—2, Vr,yekR

1. Show that (R, o) is an abelian group.

To show that (R, o) is an abelian group, we need to verify the following properties:

e Closure: For all x,y € R, we need to show that x oy € R.

roy=zc+y—2,
which s clearly in R, so the operation is closed.

e Associativity: We need to show that for all x,y,z € R,
(xoy)oz=wzo(yoz).

We compute both sides:
- Left-hand side:

(xoy)oz=(x+y—2)oz=@+y—2)+2z—2=c+y+z2—4
- Right-hand side:
rzo(yoz)=xo(y+z—-2)=c+y+z2—-2)—2=c+y+z—4.

Since both sides are equal, the operation is associative.
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Neutral element: We need to find the neutral element e € R such that for all
r € R,
roe=zx and eox=x.

Using the operation:
roe=xr+e—2=x = e=2

Therefore, the neutral element is e = 2.

Inverses: We need to find the inverse of each x € R, i.e., an element y € R such
that:
roy=2.

Using the operation:
roy=z+y—2=2 = y=4-—u=x.
Therefore, the inverse of x is 4 — x.

Commutativity: We need to show that x oy = yox. Since
roy=x+y—2 and yoxr=y-+x—2,

and since addition s commutative, xt +y =y + x, SO xoy =y ox.

Since we have shown closure, associativity, the existence of an identity element, inverses,
and commutativity, we conclude that (R, o) is an abelian group.

2. Letn € N. We define x(1) = x and x(n+ 1) = z(n) o x.

Solution:

(a)

(b)

Calculate x(2),x(3),x(4):

We compute x(2),x(3),z(4) based on the recursive definition of x(n):
-z(2)=z(l)ox=zox=ax4+r—-2=22—-2. -2(3)=x(2)ox=2x—2)ox =
(2x—2)+x—2=3x—4. -2(4) =2(3)ox = Bx—4)ox = (3x—4)+x—2 = 4z —6.
Thus, we have:

x(2)=2x—-2, x(3)=3r—4, xz(4) =4z —6.

Show that for all n € N, z(n) =nz —2(n —1):
We will prove this by induction on n.
- Base case (n=1):
r(l)=z=1z—-2(1-1) ==x.

So the base case holds.
- Inductive step: Assume the formula holds for some n, i.e., assume:

z(n) =nxr —2(n—1).

We need to show that:
z(n+1)=(n+1)x —2n.

From the definition of x(n + 1):
z(n+1)=xz(n)ox=(nx—2n—1))ox=(nx—2(n—-1))+z—2=(n+1)x—2n.

Thus, the formula holds for n 4+ 1, completing the induction.
Therefore, for all n € N, we have:

z(n) =nx —2(n —1).



3. Let A= {x € R |z is even}. Show that (A, o) is a subgroup of (R, o).
Solution:
We need to verify that (A, o) is a subgroup of (R,0). To do this, we must check the

following properties:

e Closure: Let x,y € A. Since x and y are even, we have x = 2m and y = 2n for
some m,n € Z. Now, check if xoy € A:

roy=x4+y—2=2m+2n—-2=2(m+n—1).

Since m +n — 1 is an integer, x oy is even. Thus, A is closed under o.

o Identity element: The identity element of (R, o) is 2. We check if 2 € A. Since 2
is even, the identity element belongs to A.

o Inverses: Let x € A. Since x is even, x = 2m for some m € Z. The inverse of x
in (R,0) is 4 —x. We need to check if the inverse is also in A:

4—x=4-2m=2(2-m),
which is even. Therefore, the inverse of x is also in A.

e Commutativity: Since (R, o) is commutative, (A, o) inherits commutativity.

Since (A, o) is closed, contains the identity element, has inverses for all its elements, and
is commutative, it is a subgroup of (R, o).

SolutionO 6.

1.

2. To show that Z(G) is a subgroup of G, we need to verify the following proper-
ties:

e Closure: Letx,z € Z(G). We need to show that x-z € Z(G), i.e., (x-2)-y = y-(x-2)
forally € G.

Since x € Z(G) and z € Z(G), we have:
r-y=y-x and z-y=y-z forallyéeQqG.
Now, for -z, we compute:

(@-z)-y=z-(z-y)=2-(y-2)=(r-y) 2= 2) 2=y (r2),
which shows that x - z € Z(G). Thus, Z(Q) is closed under the group operation.

e Identity element: The identity element e € G satisfiese-y =y-e =y forally € G.
Since the identity element commutes with every element of G, we have e € Z(G).

e Inverses: Let x € Z(G). We need to show that the inverse of z, denoted 7', is
also in Z(G). Since x € Z(G), we know that x -y =y -x for ally € G.

To show that x=' € Z(G), we compute:

1

e ty=@-o ) y=x-(@ -y =(@-y) - =yt foralycdG.

Thus, x=' € Z(QG), and every element of Z(G) has an inverse in Z(G).
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Therefore, Z(G) is a subgroup of G.
3. Show that G is commutative if and only if Z(G) = G.

e If G is commutative, then Z(G) = G:

If G is commutative, then for all x,y € G, we have x-y = y-x. Thus, every element
of G commutes with every other element of G, which means that Z(G) = G.

o If Z(G) =G, then G is commutative:

If Z(G) = G, then every element x € G commutes with every element y € G, i.e.,
x-y=1y-x for all x,y € G. This means that G is commutative.

Therefore, G is commutative if and only if Z(G) = G.

SolutionO 7.

1. Show that f, is an endomorphism of the group (G,-).

To show that f, is an endomorphism of G, we need to check that f, preserves the group
operation. That is, we need to verify that for all x,y € G,

fa(x ) y) = fa(x) ’ fa(y)'

Compute both sides:

falz-y)=a-(x-y)-a .

On the other hand:
fa(@) - faly) = (a-z-a™) - (a-y-a™).

Using the associativity of the group operation:
(a-z-aV-(a-y-at)=a-v-(a
Hence, we have:
fa(x : y) = fa(x) ’ fa(y)'
Therefore, f, is an endomorphism of G.

2. Verify that for all a,b € G, f,0 fy = fap-
We want to show that f, o f, = fau, i.e., for all z € G,

fa(fo()) = fas().

First, compute f,(fo(x)):

fo(x)=b-2-b7",
50

folfo(x)) =a-(b-z-07")-a”' =(a-b)-z-(a-b)".
Now, compute f,p(x):
far(®) = (a-b) -z (a-b)"

Therefore, we have:

fa(fo(2)) = fas(2).
Thus; fa o fb = fwb-



3. Show that f, is bijective and determine its inverse function.

To show that f, is bijective, we need to prove that it is both injective and surjective.

e Injectivity: To show that f, is injective, we need to prove that if f.(x) = fu(y),
then x = y. Suppose:

fa@)=foly) = a-x-al=a-y-al.

Multiply both sides by a=! on the left and a on the right:

-1

atl(a-z-at-a=a'

(a-y-at-a = x=uy.

Hence, f, is injective.

e Surjectivity: To show that f, is surjective, we need to prove that for every z € G,
there exists an © € G such that f,(x) = z. We want to find x such that:

a-r-a ' =z

Multiply both sides by a=' on the left and a on the right:
1 -1

al(a-x-ata=a'za = r=a'2-a

Therefore, for any z € G, we can find x = a~' - z - a such that f,(x) = z. Hence, f,
1S surjective.

Since f, is both injective and surjective, it is bijective.

To find the inverse of f,, we need to find a function f,-1 such that:
forlfu@) =2 and  fulfur(2)) = 2.
We compute:
forlfo@) = far(a-a-a) =a - (a-a-a”) a—u.
Therefore, the inverse of f, is f,—1, and we have:
fa' = for

SolutionO 8.

1. Show that (A,x,¢) is a ring. To show that (A,*,9) is a ring, we need to verify the
following properties:

® x 1S associative.
® < 1S associative.
® x 1s commutative.

o is distributive over *.

0 is the identity element for x.

1 is the identity element for <.
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1. x is associative: We need to show that (axb)xc=ax* (b*c) for all a,b,c € A.
(axb)*c=(a+b+1)xc=(a+b+1)+c+1l=a+b+c+2.
ax(bxc)=ax(b+c+1l)=a+b+c+1)+1=a+b+c+2.

Since both sides are equal, x is associative.

2. o is assoctative: We need to show that (aob)oc=ao (boc) for all a,b,c € A.

(aob)oc=(a-b+a+b)oc=(a-b+a+b)-c+(a-b+a+b)+c.

Simplifying this:
=a-b-c+a-c+b-c+a+b+ec

Now compute a o (boc):
ao(boc)=ao(b-c+b+c)=a-(b-c+b+c)+a+(b-c+b+c).

Simplifying this:
=a-b-ct+a-b+a-ct+a+b-c+b+ec

Re-arranging terms:
=a-b-ct+a-c+b-c+a+b+ec.

Hence, both sides are equal, so ¢ is associative.

3. x 18 commutative: We need to show that axb=bx*a for all a,b € A.
axb=a+b+1 and bxa=b+a+ 1.

Since addition is commutative in A, we have a xb = b* a, so x is commutative.

4. Distributivity of o over x: We need to show that a o (bxc) = (aob)x(aoc) for all
a,b,c € A.

ao(bxc)=ao(b+c+1l)=a-(b+c+1)+a+ (b+c+1).
Simplifying:

=a-bta-c+tat+a+bt+c+l=a-b+a-c+2a+b+c+1.
Now, compute (aob)* (aoc):

(aob)=a-b+a+b, (avoc)=a-c+a+ec.
(aob)*x(acc)=(a-b+a+bx(a-c+a+c)=(a-b+a+b)+(a-c+a+c)+ 1

Simplifying:

=a-bt+a-ct+tat+a+b+c+l=a-b+a-c+2a+b+c+1.

Hence, ao (b*xc) = (aob)x(aoc), so o is distributive over .

5. Identity element for x: We need to show that 0 is the identity element for x.
ax0=a+0+1=a+1 and O0xa=04+a+1=a+1.

So, 0 is the identity element for .

6. Identity element for o: We need to show that 1 is the identity element for ¢.
aol=a-14a+1=a+a+1=2a+1 and loa=1-a+14+a=a+14+a=2a+1.
Thus, 1 is the identity element for <.

Therefore, (A, x, o) is a ring.
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2.

Show that the map [ : (A, +,:) = (A, x,0) given by f(a) = a—1 is an isomorphism
of rings.

Solution: We need to show that f is a ring isomorphism. This requires that:
e f is a homomorphism, i.e., it preserves both addition and multiplication.
o f is bijective.
1. Homomorphism for x: We need to show that f(axb) = f(a)* f(b). We compute:
flaxb)=fla+b+1)=(a+b+1)—1=a+b,

and
fla)yxfb)=(a—1)x(b-1)=(a—1)+(b—-1)+1=a+b— 1.
Since both sides are equal, f preserves x.
2. Homomorphism for ¢: We need to show that f(aob) = f(a)o f(b). We compute:

flaob)=f(a-b+a+b)=a-b+a+b—1,
and
fla)o f(b)=(a—1)o(b—-1)=(a—1)-(b—1)4+(a—1)+ (b—1).
FExpanding this:
=a-b—a—b+14+a—1+b—-—1=a-b+a+b—1.

Hence, f preserves <.

3. Bijectivity: The map f(a) = a— 1 is clearly bijective because it is a linear map with
an inverse f~'(a) = a+ 1.

Therefore, f is an isomorphism of rings.

SolutionO 9.
Let Z|V2] = {a + b2 | a,b € Z}.

1.
2.

Show that (Z[\/2],+, x) is a ring.

Let N(a + bV2) = a® — 20>. Show that for all x,y € Z[/2], we have N(ry) =
N(z)N(y).

Deduce that the invertible elements 0fZ[\/§] are those of the form a+bv/2 with a* —2b* =
+1.

Solution0 10.

1.

It is sufficient to prove that Z[v/2] is a subring of (R,+, x). But Z[/2] is stable under
the addition operation:

(a+bV2) + (d +VV2) = (a+d)+ (b+V)V2.
It is also stable under multiplication:
(a4 bV2) x (a' +V'V/2) = (ad’ + 20V') + (ab/ + a'b)V/2.
It is stable under negation:
—(a+bV2) = —a + (=b)V2.
Moreover, 1 € Z[\/2], which completes the proof that Z[\/2] is a subring of R.
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2. Let x = a+bvV2 and y = o + V2. Using the formula for the product obtained in the
previous question, we have:

N(zy) = (ad’ +200")* — 2(ab' + a'b)* = (aa')* — 2(ab')* — 2(a’b)* + 4(bb')>.
On the other hand,

N(z) x N(y) = (a® — 20*)(a”? — 20™) = (aa’)? — 2(ab’)?* — 2(a'b)* + 4(bV')2.

3. Now, suppose © = a + by/2 is invertible with inverse y. Then, N(zy) = N(1) = 1,
and therefore N(z)N(y) = 1. Since N(z) and N(y) are both integers, we must have
N(x) = £1. Conversely, if N(x) = £1, then using the conjugate:

1 a_b\/ﬁ:j:(a—b\/g),

a—|-b\/§_ a? — 2b?

which shows that a + b\/2 is invertible with inverse & (a — bv/2).
SolutionO 11.
We will begin by proving that Q(i) is a subring of C. To do this, we observe that:

1€ Qi)
If z=a+bi and 2’ = a+ bi’ € Q(i), then:

z—2 =(a—d)+i(b=V) e Q)

and
22 = (a+bi)(d +bi") = (ad’ — bY') + i(al + a'b) € Q(1).

Neat, let z =a + bi € Q(i) with z # 0. Then:

1 a— bi a —b

2 a2+ b2 _a2—|—b2+2a2—|—b2 <

Q(4).

Thus, * is in Q(i), and therefore every non-zero element of Q(i) has an inverse in Q(i). This
completes the proof that Q(i) is a field.
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