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SolutionO 1.

Union of A and B:
AUB=1{1,2,3,4,5,6,7}

Intersection of B and C':
BnNnC ={4,6}

Set difference A — B:
A—-B={1,2}

Symmetric difference of A and C':

AAC = {1,3,5,8,10}

Solution0 2.

6.

a € E: True. Since E ={a,b,c}, ais an element of E.

a C E: False. a is not a subset of E; {a} is a subset of E.

{a} C E: True. {a} is a subset of E because a € E.

0 € E: False. O (empty set) is not an element of E.

() C E: True. The empty set () is a subset of every set, including E.
{0} C E: False. {0} is not a subset of E because ) ¢ E.

SolutionO 3.

1.

A\ B = AN B¢ By definition:
A\B={zx € A|z ¢ B},
and on the other hand:
ANB‘={zcAlzeB}={xcA|x ¢ B}.

Thus:
A\ B=AnNB".



2. AN(BUC)=(ANB)U(ANC)

Using the distributive property of intersection over union:

AN(BUC) = (ANB)U(ANC).
3. AU(BNC)=(AUB)N(AUC)

Using the distributive property of union over intersection:
AUu(BNnC)=(AuB)Nn(AUCQC).

This can also be verified using element-based reasoning: If v € AU (BNC), then x € A
orx € BNC. Ifte BNC, thenx e Bandx € C, soxr € AUB andx € AUC.
Conversely, if v € (AUB)N(AUC), thenz € AUB and x € AUC. This implies x € A,
orx € Bandzx e C,sore AU(BNC).

4. AAB=(AUB)\ (AN B)

By the definition of symmetric difference:
AAB = (A\ B)U(B\ A).

Using part (1):
A\B=ANDB° and B\ A=DBnA"

Thus:
AAB = (AN B°)U (BN A°).

On the other hand:

(AUB)\ (ANnB)=(AUB)Nn (AN B)-.
Since (AN B)¢ = A°U B¢, we have:

(AUB)\ (ANB)=(AUB)N(A°U B°).
Using the distributive property:

(AUB)N(A°UB°) =[(AUB)NA°|U[(AU B) N B°.
Simplifying each term:
(AUB)NA°=(ANA°)U(BNA°) =BnNA"

(AUB)NB® = (ANB°)U(BNB) = AN B

Thus:
(AUB)\ (ANB)=(ANB°) U (BN A°).

Therefore:
AAB = (AUB)\ (AN B).
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The Power Set P(E)
The power set P(E) of a set E is the set of all subsets of E, including the empty set and E

itself. For E ={a,b,c,d}, the power set P(E) is:
P(E) ={0,{a},{b},{c} {d},{a, b}, {a,c},{a,d},{b,c},{b,d},{c, d},
{a,b,c}, {a,b,d},{a,c,d},{b,c,d}, E}.

In total, P(E) contains 2" subsets, where n = 4 is the number of elements in E. Thus,
|P(E)| =2* = 16.
Example of a Partition of

A partition of E is a collection of non-empty, pairwise disjoint subsets of E whose union
equals EE. An example of a partition of E is:

P = {{a> b}a {C}> {d}}
Verify:
e FEach subset is non-empty: {a,b},{c}, {d} #0,

o The subsets are pairwise disjoint:
{a,b} N{c} =0, {a,b}n{d} =0, {c}n{d}=0,
e The union of all subsets equals E:
{a,b} U{c} U{d} = {a,b,c,d} = E.

Thus, Py = {{a,b},{c},{d}} is a valid partition of E.
SolutionO 5.

1. Images and Pre-images under f(z) = sin(x):
(a) The image of R under f(x) = sin(x) is:
f(R) = [_17 1]7

because the sine function oscillates between —1 and 1 for all real x.

(b) The image of [0,27] under f(z) = sin(x) is:
F(10,27]) = [-1,1],

because sin(x) completes one full cycle in the interval [0, 27].
(c¢) The image of [0, 7] under f(x) = sin(x) is:
T
because the sine function is strictly increasing from 0 to 1 in this interval.
(d) The inverse image of [0,1] under f(x) = sin(z) is:
F71(0, 1)) = | [2k, 2k + 7],
keZ

as sine is periodic with period 2.



(e) The inverse image of [3,4] under f(x) = sin(x) is:
FH3.4) =0,

because sin(zx) ¢ [3,4] for any x € R.
(f) The inverse image of [1,2] under f(x) = sin(z) is:

L) = £ ) = UL+ 2k

2
keZ
because sin(x) = 1 occurs only at v = 5 + 2km for k € Z, and sin(x) ¢ (1,2].

2. Comparison of f(A\ B) and f(A)\ f(B):
Let f(x) =2*+1, A=[-3,2], and B = [0,4]:

(a) The set A\ B =[-3,0), as B = [0,4] removes [0,4] from A.
(b) The image of A\ B under f(x):
J(ANB) = f([-3,0)) = (1,10],

because f(z) = x? 4+ 1 is increasing on [0,00) and symmetric about x = 0.
(c) The image of A under f(z):

f(A) = f([=3,2]) = [1,10],
and the image of B under f(z):
f(B) = f([0,4]) = [1,17].
(d) The set f(A)\ f(B) is:
fCAN F(B) = [1,10]\ [1,17] = 0.

Comparing:
f(A\B) =[1,10), f(A)\ f(B) =0.
Thus, f(A\ B) # f(A)\ f(B).
3. Condition for f(A\ B) = f(A)\ f(B):

For f(A\ B) = f(A)\ f(B) to hold, the function f must be **injective** (one-to-one).
Injectivity ensures that elements in A\ B map uniquely to f(A\ B), without overlap from
elements in B.

SolutionO 6.

1. E=7 and xRy < |z| = |y|:

e Reflexive: Yes, since |x| = |z| for all x € Z.

Symmetric: Yes, since |z| = |y| = |y| = |z|.

Antisymmetric: No, because |x| = |y| does not imply x =y (e.g., v =3,y = —3).

Transitive: Yes, since |x| = |y| and |y| = |z| imply |x| = |z|.

Type: This is an equivalence relation, not an order.
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2. =

R\ {0} and 2Ry < zy > 0:

Reflexive: Yes, since x-x >0 for all x # 0.

Symmetric: Yes, since xy >0 — yx > 0.

Antisymmetric: No, because xy > 0 does not imply r =y (e.g., x = 1,y = 2).
Transitive: Yes, since xy > 0 and yz > 0 imply zz > 0.

Type: This is an equivalence relation, not an order.

3. E=7 and xRy & x — y 15 even:

Reflexive: Yes, since x —x = 0, which is even.
Symmetric: Yes, since x —y even implies y — x is even.

Antisymmetric: No, because x —y even does not imply x =y (e.g., v =2,y =4).

e Transitive: Yes, since x —y even and y — z even imply x — z 1s even.
o Type: This is an equivalence relation, not an order.
Summary

e Ri, Ry, and Rs3 are all equivalence relations.

e None of them is an order because they fail antisymmetry.

SolutionO 7.

1. F=

R and 2Ry & v = —y:

Reflexive: No, since x = —x only holds for x =0, so it is not reflexive.
Symmetric: Yes, since x = —y — y = —x.

Antisymmetric: No, because x = —y and y = —x do not imply x = y (e.g.,
r=1y=-1).

Transitive: No, because x = —y and y = —z imply x = —(—=z) = z, which

contradicts the original definition unless © =0 or z = 0.
Type: This is not an equivalence relation because it is not reflexive, and it is
not an order because it is not antisymmetric.

R and 2Ry < cos?(x) + sin’(y) = 1:

Reflexive: Yes, since cos®(x) + sin(z) = 1 for all x € R.
Symmetric: Yes, since cos?(x) +sin’(y) =1 = cos?(y) + sin®*(z) = 1.

Antisymmetric: No, because cos*(x) + sin®(y) = 1 and cos?(y) + sin*(z) = 1 do
not imply x =v.

Transitive: Yes, since cos?(z)+sin?(y) = 1 and cos?(y)+sin?(z) = 1 imply cos?(x)+
L2
sin“(z) = 1.

Type: This is an equivalence relation but not an order.

3. E=N and xRy < Ip,q > 1 such that y = px? (where p,q € Z):



Reflexive: Yes, since x = px? holds for p=1,q = 1, implying vRx.

Symmetric: No, since y = px? does not imply x = py?.

Antisymmetric: Yes, because if y = pz? and x = p'y? , then © = y.

Transitive: Yes, since if y = px? and z = p'y? , then z = (pp/)x99 .

Type: This is a partial order, not an equivalence relation.

SolutionO 8.

1. Relation ~1: x ~1 y if and only if x + y is even.
Reflexive: Yes, because x + x = 2x is always even for any x € 7.
Symmetric: Yes, because if x + vy is even, then y + x = x + y, which is also even.

Transitive: Yes, because if x+y is even and y+z is even, then (x+y)+(y+2z) = x+2y+=
s even, implying that x + 2 is even.

Equivalence Classes: The equivalence classes are:

O0={x€Z|ziseveny, 1={xecZ]|xisodd}.

2. Relation ~y: x ~5 y if and only if x and y have the same remainder when divided by 5.
Reflexive: Yes, because v mod 5 =z mod 5 for any x € Z.
Symmetric: Yes, because if t mod 5 =y mod 5, then y mod 5 =2 mod 5.

Transitive: Yes, because if ¥ mod 5 = y mod 5 and y mod 5 = z mod 5, then x
mod 5 =2z mod 5.

Equivalence Classes: The equivalence classes are:
0={2€Z|rx=0 (modb)}, i={zcZ|r=1 (modb)}, 2={zxcZ|xz=2 (mod5)},
3={r€Z|r=3 (modb)}, 4={rcZ|r=4 (mod5)}.

3. Relation ~3: x ~3y if and only if x — y is a multiple of 7.
Reflexive: Yes, because v — x = 0 is a multiple of 7 for any x € Z.

Symmetric: Yes, because if x —y is a multiple of 7, then y — x = —(z — y) is also a
multiple of 7.

Transitive: Yes, because if x—y and y—z are multiples of 7, then (x—y)+(y—z) = x—2
15 also a multiple of 7.

Equivalence Classes: The equivalence classes are:
0={z€Z|z=0 (mod7)}, i={zcZ|r=1 (mod7)}, 2={zx€Z|xz=2 (mod7)},

3={2€Z|r=3 (mod7)}, d4={2zcZ|r=4 (mod7)}, 5={x€Z|xz=5 (mod7)},
6={rcZ|r=6 (modT)}.
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We will prove the equivalence in two directions.

(1) If xRy, then & =y:

Since R is an equivalence relation, it satisfies three properties: reflexivity, symmetry, and
transitivity. By the definition of an equivalence relation, if ¥Ry, then x and y belong to the
same equivalence class, denoted © = vy. This means that the equivalence classes of x and y are
identical.

TRy = T=4y.
(2) If © =14, then xRy:

If & =g, then by the definition of equivalence classes, x and y belong to the same equivalence
class. Therefore, by the properties of an equivalence relation, tRy.

r=9 = xRy.
Thus, we have shown both directions, completing the proof.
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Let N* denote the set of positive integers. Define the relation R on N* by Ry if and only if x
divides y.
1. Show that R is a partial order relation on N*:

To show that R s a partial order, we need to verify that it is reflexive, antisymmetric,
and transitive.

o Reflexive: For any x € N*, x diwvides itself, i.e., vRx.

o Antisymmetric: If ¥Ry and yRx, then x divides y and y divides x. This implies
that x =y, because the only way two distinct positive integers can divide each other
is if they are equal.

e Transitive: If Ry and yRz, then x divides y and y divides z. This implies that x
divides z, so *Rz.

Since R s reflexive, antisymmetric, and transitive, it is a partial order on N*.

2. Is R a total order relation?

A relation s a total order if it is a partial order and, for any two elements x and y in
N*, either xRy or yRax holds. In this case, R is not a total order because, for example,
2 and 3 do not divide each other, so neither 2R3 nor 3R2 holds. Therefore, R is not a
total order.

3. Describe the sets {v € N* | R5} and {x € N* | 5Rx}:

o The set {x € N* | R5} is the set of all positive integers that divide 5. The divisors
of 5 are 1 and 5, so:
{r e N*| zR5} = {1, 5}.

o The set {x € N* | 5Rx} is the set of all positive integers divisible by 5. This set is:

{z € N* | 5Rz} = {5,10,15,20,25,...}.

4. Does N* have a least element? A greatest element?



o Least element: The least element in N* with respect to the relation R is 1, because
1 divides all positive integers. Therefore, 1 is the least element.

o Greatest element: The greatest element in N* with respect to the relation R does
not exist because there is no single integer that is divisible by all positive integers.
Thus, there is no greatest element.
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Let f be the function from R to R defined by f(x) = 2*> + z — 2.

1. Definition of f~'({4}): The set f~1({4}) is the preimage of {4} under f, i.e., it consists
of all x € R such that f(x) = 4.

fx)=4 = 2*+2-2=4

Solving this equation:
?+1—-6=0

Factorizing:
(z—2)(x+3) =0
Thus, © =2 or x = —3. Therefore, f~1({4}) = {2, —3}.
2. Is the function f bijective?
Injectivity: f is not bijective because f is not injective.

Surjectivity: For surjectivity, we would need to show that for every y € R, there exists
r € R such that f(x) = y. However, since the function is quadratic and opens upwards,
it is not surjective over R. Specifically, f(x) = 2% + x — 2 has a minimum value, but no
mazimum, meaning it cannot take all real values. Therefore, f is not surjective.

Since f is neither injective nor surjective, it is not bijective.
3. Definition of f([—1,1]): The set f([—1,1]) is the image of the interval [—1,1] under
the function f, i.e., it is the set of all values f(x) for x € [—1,1].

To calculate f([—1,1]), we need to find the minimum and mazimum values of f(x) =
2 + 1 — 2 on the interval [—1,1].

First, evaluate f(x) at the endpoints of the interval:
f(=1)=(-1)2+(-1)—-2=1-1-2=-2
f)y=1"4+1-2=1+1-2=0
Nezxt, compute the derivative of f(x):
fl(x)=2x+1
Setting f'(x) =0 to find critical points:

1
20+1=0 = a::—§

1
5

() (e () -amtedrant

Thus, the minimum value of f(x) on [—1,1] is —
Therefore, f([—1,1]) = [-2,0].

-

Since —3 € [—1,1], we evaluate f at x = —3:



4. Definition of f~'([—2,4]): The set f~'([—2,4]) is the preimage of the interval [—2,4],
i.e., it consists of all x € R such that f(z) € [—2,4].

We need to solve for x such that =2 < f(x) = 2>+ 2 —2 < 4.
First, solve f(x) > —2:
P?+r-2>-2 = 2°+2>0
Factoring:
z(z+1)>0

This inequality holds when x < —1 or x > 0.
Nezxt, solve f(x) < 4:

P?4+r—-2<4 = 2242-6<0
Factoring:
(x—2)(x+3)<0
This inequality holds when —3 < x < 2.

Combining the two results, we have:

Therefore, the set f~1([—2,4]) = [-3,—1]U[0,2].
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1. Injectivity:
A function f is injective if f(x1) = f(x2) implies x1 = xo. Let’s assume f(x1) = f(x2),
which gives:
2$1 . 2.232
1+a22 143

Simplifying this equation:
w1(1+ 73) = 22(1 +27),

which does not necessarily imply x1 = xo. Therefore, the function is not injective.

Counterexample: Toke x1 =2 and x4 = %

Clearly, f(2) = f (%), but 2 #+ %, proving that the function is not injective.

2. Surjectivity:
A function f is surjective if for every y € R, there exists an x € R such that f(z) = y.
We know that the function f(x) = 1-2&2 has a mazimum at x = 1 where f(1) = 1 and
a minimum at © = —1 where f(—1) = —1, and as * — +oo, f(x) — 0. Therefore, the
range of f(x) is (—1,1), and the function is not surjective because it cannot take values

outside of this interval.




3. Range of f(x):

We now show that the range of f(x) = 1_2502 is [=1,1]. To do this, we need to find the

mazximum and minimum values of f(x).

First, we calculate the derivative of f(x):

oo (T4+27)(2) —22(22)  2(1 —a?)
) = (1+ 22)? o (1+a2)?

Setting f'(x) =0 gives:
1-2°=0 = x==l1

Fvaluating f(z) at x =1 and v = —1:

2x1 2% (-1)

e b SV = om et

S
As © — +o0o, f(x) — 0. Therefore, the range of f(x) is [—1,1], so we have shown that:

4. Restriction g(z) = f(z) on [—1,1]:
Now, we need to show that the restriction of f to [—1,1], which we denote by g(x) = f(x),
18 a biyjection.
Injectivity: Since the derivative f'(x) is positive over the entire interval [—1,1], the

function f(x) = 1_%’;2 18 strictly increasing on this interval.

Therefore, the function f(x) is injective on [—1,1].

Surjectivity: The range of f(x) on [—1,1] is [—1,1], so the restriction g(x) is surjective.
Since g(x) is both injective and surjective, it is a bijection.

Solution0 13.
Let f . E—F,g: F—G,and h=go f.

1. Imgectivity of f: Show that if h is injective, then f is injective. Also, show that if h is
surjective, then g is surjective.
Proof:

1.1 Injectivity of f: Assume that h = g o f is injective. To show that f is injective, we
need to prove that for any x1,x2 € E, if f(x1) = f(x2), then z1 = x.

Since h(xy) = g(f(z1)) and h(xe) = g(f(22)), if f(z1) = f(x2), then
h(z1) = h(z2).

Since h is injective, it follows that

Hence, f is injective.

1.2 Surjectivity of g: Assume that h = g o f is surjective. To show that g is surjective,
we need to prove that for every y € G, there exists some x € F' such that g(x) = y.

Since h is surjective, for each y € G, there exists v € E such that h(x) = g(f(z)) = y.
Therefore, for every y € G, we can find an x € F such that g(x) =y, which proves that
g 18 surjective.
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2. Surjectivity of f: Show that if h is surjective and g is injective, then f is surjective.
Proof:

Assume that h is surjective and g is injective. To prove that f is surjective, we need to
show that for every y € F, there exists some v € E such that f(x) =vy.

Since h is surjective, for each y € G, there exists z € E such that h(z) = g(f(z)) = y.
Since g is injective, there exists a unique x € F such that f(x) =y, which implies that f
18 surjective.

3. Inyectivity of g: Show that if h is injective and f is surjective, then g is injective.
Proof:

Assume that h is injective and f is surjective. To show that g is injective, we need to
prove that if g(x1) = g(x2), then x1 = xo.

Since h(z1) = g(f(x1)) and h(xs) = g(f(x2), if glar) = glx2), we have
h(x1) = h(zs).

Since h is injective, it follows that
f(z1) = f(22).

Since f is surjective, there ezists some x € F such that f(x) =y, and therefore, g(x;) =
g9(@2).
Hence, g is injective.
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