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Solution0 1.

• Union of A and B:
A ∪B = {1, 2, 3, 4, 5, 6, 7}

• Intersection of B and C:
B ∩ C = {4, 6}

• Set difference A−B:
A−B = {1, 2}

• Symmetric difference of A and C:

A∆C = {1, 3, 5, 8, 10}

Solution0 2.

1. a ∈ E: True. Since E = {a, b, c}, a is an element of E.

2. a ⊂ E: False. a is not a subset of E; {a} is a subset of E.

3. {a} ⊂ E: True. {a} is a subset of E because a ∈ E.

4. ∅ ∈ E: False. ∅ (empty set) is not an element of E.

5. ∅ ⊂ E: True. The empty set ∅ is a subset of every set, including E.

6. {∅} ⊂ E: False. {∅} is not a subset of E because ∅ /∈ E.

Solution0 3.

1. A \B = A ∩Bc By definition:

A \B = {x ∈ A | x /∈ B},

and on the other hand:

A ∩Bc = {x ∈ A | x ∈ Bc} = {x ∈ A | x /∈ B}.

Thus:
A \B = A ∩Bc.
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2. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Using the distributive property of intersection over union:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

3. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Using the distributive property of union over intersection:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

This can also be verified using element-based reasoning: If x ∈ A ∪ (B ∩ C), then x ∈ A
or x ∈ B ∩ C. If x ∈ B ∩ C, then x ∈ B and x ∈ C, so x ∈ A ∪B and x ∈ A ∪ C.
Conversely, if x ∈ (A∪B)∩ (A∪C), then x ∈ A∪B and x ∈ A∪C. This implies x ∈ A,
or x ∈ B and x ∈ C, so x ∈ A ∪ (B ∩ C).

4. A4B = (A ∪B) \ (A ∩B)

By the definition of symmetric difference:

A4B = (A \B) ∪ (B \ A).

Using part (1):
A \B = A ∩Bc and B \ A = B ∩ Ac.

Thus:
A4B = (A ∩Bc) ∪ (B ∩ Ac).

On the other hand:

(A ∪B) \ (A ∩B) = (A ∪B) ∩ (A ∩B)c.

Since (A ∩B)c = Ac ∪Bc, we have:

(A ∪B) \ (A ∩B) = (A ∪B) ∩ (Ac ∪Bc).

Using the distributive property:

(A ∪B) ∩ (Ac ∪Bc) = [(A ∪B) ∩ Ac] ∪ [(A ∪B) ∩Bc].

Simplifying each term:

(A ∪B) ∩ Ac = (A ∩ Ac) ∪ (B ∩ Ac) = B ∩ Ac,

(A ∪B) ∩Bc = (A ∩Bc) ∪ (B ∩Bc) = A ∩Bc.

Thus:
(A ∪B) \ (A ∩B) = (A ∩Bc) ∪ (B ∩ Ac).

Therefore:
A4B = (A ∪B) \ (A ∩B).
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Solution0 4.
The Power Set P(E)

The power set P(E) of a set E is the set of all subsets of E, including the empty set and E
itself. For E = {a, b, c, d}, the power set P(E) is:

P(E) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, E}.

In total, P(E) contains 2n subsets, where n = 4 is the number of elements in E. Thus,
|P(E)| = 24 = 16.

Example of a Partition of E
A partition of E is a collection of non-empty, pairwise disjoint subsets of E whose union

equals E. An example of a partition of E is:

P1 = {{a, b}, {c}, {d}}.

Verify:

• Each subset is non-empty: {a, b}, {c}, {d} 6= ∅,

• The subsets are pairwise disjoint:

{a, b} ∩ {c} = ∅, {a, b} ∩ {d} = ∅, {c} ∩ {d} = ∅,

• The union of all subsets equals E:

{a, b} ∪ {c} ∪ {d} = {a, b, c, d} = E.

Thus, P1 = {{a, b}, {c}, {d}} is a valid partition of E.

Solution0 5.

1. Images and Pre-images under f(x) = sin(x):

(a) The image of R under f(x) = sin(x) is:

f(R) = [−1, 1],

because the sine function oscillates between −1 and 1 for all real x.
(b) The image of [0, 2π] under f(x) = sin(x) is:

f([0, 2π]) = [−1, 1],

because sin(x) completes one full cycle in the interval [0, 2π].
(c) The image of [0, π

2
] under f(x) = sin(x) is:

f([0,
π

2
]) = [0, 1],

because the sine function is strictly increasing from 0 to 1 in this interval.
(d) The inverse image of [0, 1] under f(x) = sin(x) is:

f−1([0, 1]) =
⋃
k∈Z

[2kπ, 2kπ + π] ,

as sine is periodic with period 2π.
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(e) The inverse image of [3, 4] under f(x) = sin(x) is:

f−1([3, 4]) = ∅,

because sin(x) /∈ [3, 4] for any x ∈ R.
(f) The inverse image of [1, 2] under f(x) = sin(x) is:

f−1([1, 2]) = f−1({1}) =
⋃
k∈Z

{π
2

+ 2kπ
}
,

because sin(x) = 1 occurs only at x = π
2

+ 2kπ for k ∈ Z, and sin(x) /∈ (1, 2].

2. Comparison of f(A \B) and f(A) \ f(B):

Let f(x) = x2 + 1, A = [−3, 2], and B = [0, 4]:

(a) The set A \B = [−3, 0), as B = [0, 4] removes [0, 4] from A.

(b) The image of A \B under f(x):

f(A \B) = f([−3, 0)) = (1, 10],

because f(x) = x2 + 1 is increasing on [0,∞) and symmetric about x = 0.

(c) The image of A under f(x):

f(A) = f([−3, 2]) = [1, 10],

and the image of B under f(x):

f(B) = f([0, 4]) = [1, 17].

(d) The set f(A) \ f(B) is:

f(A) \ f(B) = [1, 10] \ [1, 17] = ∅.

Comparing:
f(A \B) = [1, 10), f(A) \ f(B) = ∅.

Thus, f(A \B) 6= f(A) \ f(B).

3. Condition for f(A \B) = f(A) \ f(B):

For f(A \ B) = f(A) \ f(B) to hold, the function f must be **injective** (one-to-one).
Injectivity ensures that elements in A\B map uniquely to f(A\B), without overlap from
elements in B.

Solution0 6.

1. E = Z and xRy ⇔ |x| = |y|:

• Reflexive: Yes, since |x| = |x| for all x ∈ Z.
• Symmetric: Yes, since |x| = |y| =⇒ |y| = |x|.
• Antisymmetric: No, because |x| = |y| does not imply x = y (e.g., x = 3, y = −3).

• Transitive: Yes, since |x| = |y| and |y| = |z| imply |x| = |z|.
• Type: This is an equivalence relation, not an order.
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2. E = R \ {0} and xRy ⇔ xy > 0:

• Reflexive: Yes, since x · x > 0 for all x 6= 0.

• Symmetric: Yes, since xy > 0 =⇒ yx > 0.

• Antisymmetric: No, because xy > 0 does not imply x = y (e.g., x = 1, y = 2).

• Transitive: Yes, since xy > 0 and yz > 0 imply xz > 0.

• Type: This is an equivalence relation, not an order.

3. E = Z and xRy ⇔ x− y is even:

• Reflexive: Yes, since x− x = 0, which is even.

• Symmetric: Yes, since x− y even implies y − x is even.

• Antisymmetric: No, because x− y even does not imply x = y (e.g., x = 2, y = 4).

• Transitive: Yes, since x− y even and y − z even imply x− z is even.

• Type: This is an equivalence relation, not an order.

Summary
• R1, R2, and R3 are all equivalence relations.

• None of them is an order because they fail antisymmetry.

Solution0 7.

1. E = R and xRy ⇔ x = −y:

• Reflexive: No, since x = −x only holds for x = 0, so it is not reflexive.

• Symmetric: Yes, since x = −y =⇒ y = −x.
• Antisymmetric: No, because x = −y and y = −x do not imply x = y (e.g.,
x = 1, y = −1).

• Transitive: No, because x = −y and y = −z imply x = −(−z) = z, which
contradicts the original definition unless x = 0 or z = 0.

• Type: This is not an equivalence relation because it is not reflexive, and it is
not an order because it is not antisymmetric.

2. E = R and xRy ⇔ cos2(x) + sin2(y) = 1:

• Reflexive: Yes, since cos2(x) + sin2(x) = 1 for all x ∈ R.
• Symmetric: Yes, since cos2(x) + sin2(y) = 1 =⇒ cos2(y) + sin2(x) = 1.

• Antisymmetric: No, because cos2(x) + sin2(y) = 1 and cos2(y) + sin2(x) = 1 do
not imply x = y.

• Transitive: Yes, since cos2(x)+sin2(y) = 1 and cos2(y)+sin2(z) = 1 imply cos2(x)+
sin2(z) = 1.

• Type: This is an equivalence relation but not an order.

3. E = N and xRy ⇔ ∃p, q ≥ 1 such that y = pxq (where p, q ∈ Z):
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• Reflexive: Yes, since x = pxq holds for p = 1, q = 1, implying xRx.
• Symmetric: No, since y = pxq does not imply x = pyq.

• Antisymmetric: Yes, because if y = pxq and x = p′yq
′, then x = y.

• Transitive: Yes, since if y = pxq and z = p′yq
′, then z = (pp′)xqq

′.

• Type: This is a partial order, not an equivalence relation.

Solution0 8.

1. Relation ∼1: x ∼1 y if and only if x+ y is even.

Reflexive: Yes, because x+ x = 2x is always even for any x ∈ Z.
Symmetric: Yes, because if x+ y is even, then y + x = x+ y, which is also even.

Transitive: Yes, because if x+y is even and y+z is even, then (x+y)+(y+z) = x+2y+z
is even, implying that x+ z is even.

Equivalence Classes: The equivalence classes are:

0̇ = {x ∈ Z | x is even}, 1̇ = {x ∈ Z | x is odd}.

2. Relation ∼2: x ∼2 y if and only if x and y have the same remainder when divided by 5.

Reflexive: Yes, because x mod 5 = x mod 5 for any x ∈ Z.
Symmetric: Yes, because if x mod 5 = y mod 5, then y mod 5 = x mod 5.

Transitive: Yes, because if x mod 5 = y mod 5 and y mod 5 = z mod 5, then x
mod 5 = z mod 5.

Equivalence Classes: The equivalence classes are:

0̇ = {x ∈ Z | x ≡ 0 (mod 5)}, 1̇ = {x ∈ Z | x ≡ 1 (mod 5)}, 2̇ = {x ∈ Z | x ≡ 2 (mod 5)},

3̇ = {x ∈ Z | x ≡ 3 (mod 5)}, 4̇ = {x ∈ Z | x ≡ 4 (mod 5)}.

3. Relation ∼3: x ∼3 y if and only if x− y is a multiple of 7.

Reflexive: Yes, because x− x = 0 is a multiple of 7 for any x ∈ Z.
Symmetric: Yes, because if x − y is a multiple of 7, then y − x = −(x − y) is also a
multiple of 7.

Transitive: Yes, because if x−y and y−z are multiples of 7, then (x−y)+(y−z) = x−z
is also a multiple of 7.

Equivalence Classes: The equivalence classes are:

0̇ = {x ∈ Z | x ≡ 0 (mod 7)}, 1̇ = {x ∈ Z | x ≡ 1 (mod 7)}, 2̇ = {x ∈ Z | x ≡ 2 (mod 7)},

3̇ = {x ∈ Z | x ≡ 3 (mod 7)}, 4̇ = {x ∈ Z | x ≡ 4 (mod 7)}, 5̇ = {x ∈ Z | x ≡ 5 (mod 7)},

6̇ = {x ∈ Z | x ≡ 6 (mod 7)}.
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Solution0 9.
We will prove the equivalence in two directions.

(1) If xRy, then ẋ = ẏ:
Since R is an equivalence relation, it satisfies three properties: reflexivity, symmetry, and

transitivity. By the definition of an equivalence relation, if xRy, then x and y belong to the
same equivalence class, denoted ẋ = ẏ. This means that the equivalence classes of x and y are
identical.

xRy ⇒ ẋ = ẏ.

(2) If ẋ = ẏ, then xRy:
If ẋ = ẏ, then by the definition of equivalence classes, x and y belong to the same equivalence

class. Therefore, by the properties of an equivalence relation, xRy.

ẋ = ẏ ⇒ xRy.

Thus, we have shown both directions, completing the proof.

Solution0 10.
Let N∗ denote the set of positive integers. Define the relation R on N∗ by xRy if and only if x
divides y.

1. Show that R is a partial order relation on N∗:
To show that R is a partial order, we need to verify that it is reflexive, antisymmetric,
and transitive.

• Reflexive: For any x ∈ N∗, x divides itself, i.e., xRx.
• Antisymmetric: If xRy and yRx, then x divides y and y divides x. This implies
that x = y, because the only way two distinct positive integers can divide each other
is if they are equal.

• Transitive: If xRy and yRz, then x divides y and y divides z. This implies that x
divides z, so xRz.

Since R is reflexive, antisymmetric, and transitive, it is a partial order on N∗.

2. Is R a total order relation?

A relation is a total order if it is a partial order and, for any two elements x and y in
N∗, either xRy or yRx holds. In this case, R is not a total order because, for example,
2 and 3 do not divide each other, so neither 2R3 nor 3R2 holds. Therefore, R is not a
total order.

3. Describe the sets {x ∈ N∗ | xR5} and {x ∈ N∗ | 5Rx}:

• The set {x ∈ N∗ | xR5} is the set of all positive integers that divide 5. The divisors
of 5 are 1 and 5, so:

{x ∈ N∗ | xR5} = {1, 5}.

• The set {x ∈ N∗ | 5Rx} is the set of all positive integers divisible by 5. This set is:

{x ∈ N∗ | 5Rx} = {5, 10, 15, 20, 25, . . . }.

4. Does N∗ have a least element? A greatest element?
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• Least element: The least element in N∗ with respect to the relation R is 1, because
1 divides all positive integers. Therefore, 1 is the least element.
• Greatest element: The greatest element in N∗ with respect to the relation R does
not exist because there is no single integer that is divisible by all positive integers.
Thus, there is no greatest element.

Solution0 11.
Let f be the function from R to R defined by f(x) = x2 + x− 2.

1. Definition of f−1({4}): The set f−1({4}) is the preimage of {4} under f , i.e., it consists
of all x ∈ R such that f(x) = 4.

f(x) = 4 ⇒ x2 + x− 2 = 4

Solving this equation:
x2 + x− 6 = 0

Factorizing:
(x− 2)(x+ 3) = 0

Thus, x = 2 or x = −3. Therefore, f−1({4}) = {2,−3}.

2. Is the function f bijective?

Injectivity: f is not bijective because f is not injective.

Surjectivity: For surjectivity, we would need to show that for every y ∈ R, there exists
x ∈ R such that f(x) = y. However, since the function is quadratic and opens upwards,
it is not surjective over R. Specifically, f(x) = x2 + x− 2 has a minimum value, but no
maximum, meaning it cannot take all real values. Therefore, f is not surjective.

Since f is neither injective nor surjective, it is not bijective.

3. Definition of f([−1, 1]): The set f([−1, 1]) is the image of the interval [−1, 1] under
the function f , i.e., it is the set of all values f(x) for x ∈ [−1, 1].

To calculate f([−1, 1]), we need to find the minimum and maximum values of f(x) =
x2 + x− 2 on the interval [−1, 1].

First, evaluate f(x) at the endpoints of the interval:

f(−1) = (−1)2 + (−1)− 2 = 1− 1− 2 = −2

f(1) = 12 + 1− 2 = 1 + 1− 2 = 0

Next, compute the derivative of f(x):

f ′(x) = 2x+ 1

Setting f ′(x) = 0 to find critical points:

2x+ 1 = 0 ⇒ x = −1

2

Since −1
2
∈ [−1, 1], we evaluate f at x = −1

2
:

f

(
−1

2

)
=

(
−1

2

)2

+

(
−1

2

)
− 2 =

1

4
− 1

2
− 2 = −9

4

Thus, the minimum value of f(x) on [−1, 1] is −9
4
, and the maximum value is 0.

Therefore, f([−1, 1]) =
[
−9

4
, 0
]
.
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4. Definition of f−1([−2, 4]): The set f−1([−2, 4]) is the preimage of the interval [−2, 4],
i.e., it consists of all x ∈ R such that f(x) ∈ [−2, 4].

We need to solve for x such that −2 ≤ f(x) = x2 + x− 2 ≤ 4.

First, solve f(x) ≥ −2:

x2 + x− 2 ≥ −2 ⇒ x2 + x ≥ 0

Factoring:
x(x+ 1) ≥ 0

This inequality holds when x ≤ −1 or x ≥ 0.

Next, solve f(x) ≤ 4:

x2 + x− 2 ≤ 4 ⇒ x2 + x− 6 ≤ 0

Factoring:
(x− 2)(x+ 3) ≤ 0

This inequality holds when −3 ≤ x ≤ 2.

Combining the two results, we have:

−3 ≤ x ≤ −1 or 0 ≤ x ≤ 2

Therefore, the set f−1([−2, 4]) = [−3,−1] ∪ [0, 2].

Solution0 12.

1. Injectivity:
A function f is injective if f(x1) = f(x2) implies x1 = x2. Let’s assume f(x1) = f(x2),
which gives:

2x1
1 + x21

=
2x2

1 + x22
.

Simplifying this equation:
x1(1 + x22) = x2(1 + x21),

which does not necessarily imply x1 = x2. Therefore, the function is not injective.

Counterexample: Take x1 = 2 and x2 = 1
2
:

f(2) =
4

5
, f

(
1

2

)
=

4

5
.

Clearly, f(2) = f
(
1
2

)
, but 2 6= 1

2
, proving that the function is not injective.

2. Surjectivity:
A function f is surjective if for every y ∈ R, there exists an x ∈ R such that f(x) = y.
We know that the function f(x) = 2x

1+x2
has a maximum at x = 1 where f(1) = 1 and

a minimum at x = −1 where f(−1) = −1, and as x → ±∞, f(x) → 0. Therefore, the
range of f(x) is (−1, 1), and the function is not surjective because it cannot take values
outside of this interval.
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3. Range of f(x):
We now show that the range of f(x) = 2x

1+x2
is [−1, 1]. To do this, we need to find the

maximum and minimum values of f(x).

First, we calculate the derivative of f(x):

f ′(x) =
(1 + x2)(2)− 2x(2x)

(1 + x2)2
=

2(1− x2)
(1 + x2)2

.

Setting f ′(x) = 0 gives:
1− x2 = 0 ⇒ x = ±1.

Evaluating f(x) at x = 1 and x = −1:

f(1) =
2× 1

1 + 12
= 1, f(−1) =

2× (−1)

1 + (−1)2
= −1.

As x→ ±∞, f(x)→ 0. Therefore, the range of f(x) is [−1, 1], so we have shown that:

f(R) = [−1, 1].

4. Restriction g(x) = f(x) on [−1, 1]:
Now, we need to show that the restriction of f to [−1, 1], which we denote by g(x) = f(x),
is a bijection.

Injectivity: Since the derivative f ′(x) is positive over the entire interval [−1, 1], the
function f(x) = 2x

1+x2
is strictly increasing on this interval.

Therefore, the function f(x) is injective on [−1, 1].

Surjectivity: The range of f(x) on [−1, 1] is [−1, 1], so the restriction g(x) is surjective.

Since g(x) is both injective and surjective, it is a bijection.

Solution0 13.
Let f : E → F , g : F → G, and h = g ◦ f .

1. Injectivity of f : Show that if h is injective, then f is injective. Also, show that if h is
surjective, then g is surjective.

Proof:

1.1 Injectivity of f : Assume that h = g ◦ f is injective. To show that f is injective, we
need to prove that for any x1, x2 ∈ E, if f(x1) = f(x2), then x1 = x2.

Since h(x1) = g(f(x1)) and h(x2) = g(f(x2)), if f(x1) = f(x2), then

h(x1) = h(x2).

Since h is injective, it follows that
x1 = x2.

Hence, f is injective.

1.2 Surjectivity of g: Assume that h = g ◦ f is surjective. To show that g is surjective,
we need to prove that for every y ∈ G, there exists some x ∈ F such that g(x) = y.

Since h is surjective, for each y ∈ G, there exists x ∈ E such that h(x) = g(f(x)) = y.
Therefore, for every y ∈ G, we can find an x ∈ F such that g(x) = y, which proves that
g is surjective.
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2. Surjectivity of f : Show that if h is surjective and g is injective, then f is surjective.

Proof:

Assume that h is surjective and g is injective. To prove that f is surjective, we need to
show that for every y ∈ F , there exists some x ∈ E such that f(x) = y.

Since h is surjective, for each y ∈ G, there exists z ∈ E such that h(z) = g(f(z)) = y.
Since g is injective, there exists a unique x ∈ F such that f(x) = y, which implies that f
is surjective.

3. Injectivity of g: Show that if h is injective and f is surjective, then g is injective.

Proof:

Assume that h is injective and f is surjective. To show that g is injective, we need to
prove that if g(x1) = g(x2), then x1 = x2.

Since h(x1) = g(f(x1)) and h(x2) = g(f(x2)), if g(x1) = g(x2), we have

h(x1) = h(x2).

Since h is injective, it follows that

f(x1) = f(x2).

Since f is surjective, there exists some x ∈ F such that f(x) = y, and therefore, g(x1) =
g(x2).

Hence, g is injective.
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